Inhibition of Angiopoietin-2 rescues sporadic brain arteriovenous malformations by reducing pericyte loss

IF 9.2 1区 医学 Q1 PERIPHERAL VASCULAR DISEASE Angiogenesis Pub Date : 2024-12-05 DOI:10.1007/s10456-024-09957-1
Tianqi Tu, Shikun Zhang, Jingwei Li, Chendan Jiang, Jian Ren, Shiju Zhang, Xiaosheng Meng, Hao Peng, Dong Xing, Hongqi Zhang, Tao Hong, Jiaxing Yu
{"title":"Inhibition of Angiopoietin-2 rescues sporadic brain arteriovenous malformations by reducing pericyte loss","authors":"Tianqi Tu,&nbsp;Shikun Zhang,&nbsp;Jingwei Li,&nbsp;Chendan Jiang,&nbsp;Jian Ren,&nbsp;Shiju Zhang,&nbsp;Xiaosheng Meng,&nbsp;Hao Peng,&nbsp;Dong Xing,&nbsp;Hongqi Zhang,&nbsp;Tao Hong,&nbsp;Jiaxing Yu","doi":"10.1007/s10456-024-09957-1","DOIUrl":null,"url":null,"abstract":"<div><p>Brain arteriovenous malformations (bAVMs) are a major cause of hemorrhagic stroke in children and young adults. These lesions are thought to result from somatic <i>KRAS/BRAF</i> mutations in brain endothelial cells (bECs). In this study, we introduce a new bAVM model by inducing a brain endothelial-specific <i>Braf</i><sup>V600E</sup> mutation using the <i>Slc1o1c1</i>(BAC)-CreER driver line. The pathological characteristics of this model resemble human bAVMs, including dilated and hyperpermeable vessels, as well as parenchymal hemorrhage. We observed that these lesions showed a typical reduction in pericyte coverage and disruption of the pericyte-endothelial cell connection. Additionally, we found that ANGPT2 levels were significantly increased in the endothelium of bAVM lesions, which may be a critical factor in the pericyte deficits of the malformed vessels. Treatment with an ANGPT2 neutralizing antibody confirmed that blocking ANGPT2 can restore pericyte density in bAVM lesions, improve pericyte coverage around microvessels, enhance tight junction protein coverage related to endothelial cells, and normalize endothelial barrier function. In summary, our findings suggest that increased ANGPT2 expression in endothelial cells with the <i>Braf</i><sup>V600E</sup> mutation is a key factor in pericyte deficiencies in bAVMs, highlighting the potential effectiveness of anti-ANGPT2 therapy in treating bAVMs.</p></div>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":"28 1","pages":""},"PeriodicalIF":9.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angiogenesis","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s10456-024-09957-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

Abstract

Brain arteriovenous malformations (bAVMs) are a major cause of hemorrhagic stroke in children and young adults. These lesions are thought to result from somatic KRAS/BRAF mutations in brain endothelial cells (bECs). In this study, we introduce a new bAVM model by inducing a brain endothelial-specific BrafV600E mutation using the Slc1o1c1(BAC)-CreER driver line. The pathological characteristics of this model resemble human bAVMs, including dilated and hyperpermeable vessels, as well as parenchymal hemorrhage. We observed that these lesions showed a typical reduction in pericyte coverage and disruption of the pericyte-endothelial cell connection. Additionally, we found that ANGPT2 levels were significantly increased in the endothelium of bAVM lesions, which may be a critical factor in the pericyte deficits of the malformed vessels. Treatment with an ANGPT2 neutralizing antibody confirmed that blocking ANGPT2 can restore pericyte density in bAVM lesions, improve pericyte coverage around microvessels, enhance tight junction protein coverage related to endothelial cells, and normalize endothelial barrier function. In summary, our findings suggest that increased ANGPT2 expression in endothelial cells with the BrafV600E mutation is a key factor in pericyte deficiencies in bAVMs, highlighting the potential effectiveness of anti-ANGPT2 therapy in treating bAVMs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抑制血管生成素-2通过减少周细胞损失来拯救散发性脑动静脉畸形
脑动静脉畸形(bAVMs)是儿童和年轻人出血性中风的主要原因。这些病变被认为是由脑内皮细胞(bECs)的体细胞KRAS/BRAF突变引起的。在这项研究中,我们通过使用slc101c1 (BAC)-CreER驱动系诱导脑内皮特异性BrafV600E突变,引入了一种新的bAVM模型。该模型的病理特征与人类脑脊髓瘤相似,包括血管扩张和高渗透性,以及实质出血。我们观察到这些病变表现出典型的周细胞覆盖减少和周细胞-内皮细胞连接破坏。此外,我们发现在bAVM病变的内皮中ANGPT2水平显著升高,这可能是畸形血管周细胞缺陷的关键因素。ANGPT2中和抗体治疗证实阻断ANGPT2可恢复bAVM病变周细胞密度,提高微血管周围周细胞覆盖率,增强内皮细胞相关紧密连接蛋白覆盖率,使内皮屏障功能正常化。综上所述,我们的研究结果表明,BrafV600E突变的内皮细胞中ANGPT2表达增加是导致bavm周细胞缺陷的关键因素,这突出了抗ANGPT2治疗bavm的潜在有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
anti-fade mounting medium containing DAPI
来源期刊
Angiogenesis
Angiogenesis PERIPHERAL VASCULAR DISEASE-
CiteScore
21.90
自引率
8.20%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Angiogenesis, a renowned international journal, seeks to publish high-quality original articles and reviews on the cellular and molecular mechanisms governing angiogenesis in both normal and pathological conditions. By serving as a primary platform for swift communication within the field of angiogenesis research, this multidisciplinary journal showcases pioneering experimental studies utilizing molecular techniques, in vitro methods, animal models, and clinical investigations into angiogenic diseases. Furthermore, Angiogenesis sheds light on cutting-edge therapeutic strategies for promoting or inhibiting angiogenesis, while also highlighting fresh markers and techniques for disease diagnosis and prognosis.
期刊最新文献
Anti-angiogenic therapy as potential treatment for adenomyosis. Ref-1 is overexpressed in neovascular eye disease and targetable with a novel inhibitor A novel quantitative angiogenesis assay based on visualized vascular organoid Effect of oral nintedanib vs placebo on epistaxis in hereditary hemorrhagic telangiectasia: the EPICURE multicenter randomized double-blind trial Circulating endothelial cells: a key biomarker of persistent fatigue after hospitalization for COVID-19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1