首页 > 最新文献

Angiogenesis最新文献

英文 中文
Oscillatory contractile forces refine endothelial cell-cell interactions for continuous lumen formation governed by Heg1/Ccm1. 振荡收缩力完善了内皮细胞与细胞之间的相互作用,从而在 Heg1/Ccm1 的调控下形成连续的管腔。
IF 9.2 1区 医学 Q1 PERIPHERAL VASCULAR DISEASE Pub Date : 2024-09-09 DOI: 10.1007/s10456-024-09945-5
Jianmin Yin, Ludovico Maggi, Cora Wiesner, Markus Affolter, Heinz-Georg Belting

The formation and organization of complex blood vessel networks rely on various biophysical forces, yet the mechanisms governing endothelial cell-cell interactions under different mechanical inputs are not well understood. Using the dorsal longitudinal anastomotic vessel (DLAV) in zebrafish as a model, we studied the roles of multiple biophysical inputs and cerebral cavernous malformation (CCM)-related genes in angiogenesis. Our research identifies heg1 and krit1 (ccm1) as crucial for the formation of endothelial cell-cell interfaces during anastomosis. In mutants of these genes, cell-cell interfaces are entangled with fragmented apical domains. A Heg1 live reporter demonstrated that Heg1 is dynamically involved in the oscillatory constrictions along cell-cell junctions, whilst a Myosin live reporter indicated that heg1 and krit1 mutants lack actomyosin contractility along these junctions. In wild-type embryos, the oscillatory contractile forces at junctions refine endothelial cell-cell interactions by straightening junctions and eliminating excessive cell-cell interfaces. Conversely, in the absence of junctional contractility, the cell-cell interfaces become entangled and prone to collapse in both mutants, preventing the formation of a continuous luminal space. By restoring junctional contractility via optogenetic activation of RhoA, contorted junctions are straightened and disentangled. Additionally, haemodynamic forces complement actomyosin contractile forces in resolving entangled cell-cell interfaces in both wild-type and mutant embryos. Overall, our study reveals that oscillatory contractile forces governed by Heg1 and Krit1 are essential for maintaining proper endothelial cell-cell interfaces and thus for the formation of a continuous luminal space, which is essential to generate a functional vasculature.

复杂血管网络的形成和组织依赖于各种生物物理力,然而不同机械输入下的内皮细胞-细胞相互作用机制还不甚明了。我们以斑马鱼背侧纵向吻合血管(DLAV)为模型,研究了多种生物物理输入和脑海绵畸形(CCM)相关基因在血管生成中的作用。我们的研究发现,heg1 和 krit1(ccm1)对吻合过程中内皮细胞-细胞界面的形成至关重要。在这些基因的突变体中,细胞-细胞界面与破碎的顶端结构域纠缠在一起。Heg1 活体报告表明,Heg1 动态参与了沿细胞-细胞连接处的振荡收缩,而肌球蛋白活体报告表明,heg1 和 krit1 突变体缺乏沿这些连接处的肌动蛋白收缩能力。在野生型胚胎中,交界处的摆动收缩力通过拉直交界和消除过多的细胞-细胞界面来完善内皮细胞-细胞之间的相互作用。相反,在缺乏连接收缩力的情况下,两种突变体的细胞-细胞界面会纠缠在一起并容易塌陷,从而阻碍形成连续的管腔空间。通过光遗传激活 RhoA 来恢复交界收缩力,扭曲的交界就会被拉直和解开。此外,在解决野生型和突变型胚胎中缠结的细胞-细胞界面时,血液动力学力对肌动蛋白收缩力起到了补充作用。总之,我们的研究揭示了由 Heg1 和 Krit1 控制的振荡收缩力对于维持适当的内皮细胞-细胞界面,从而形成连续的管腔空间至关重要,而这对于生成功能性血管是必不可少的。
{"title":"Oscillatory contractile forces refine endothelial cell-cell interactions for continuous lumen formation governed by Heg1/Ccm1.","authors":"Jianmin Yin, Ludovico Maggi, Cora Wiesner, Markus Affolter, Heinz-Georg Belting","doi":"10.1007/s10456-024-09945-5","DOIUrl":"https://doi.org/10.1007/s10456-024-09945-5","url":null,"abstract":"<p><p>The formation and organization of complex blood vessel networks rely on various biophysical forces, yet the mechanisms governing endothelial cell-cell interactions under different mechanical inputs are not well understood. Using the dorsal longitudinal anastomotic vessel (DLAV) in zebrafish as a model, we studied the roles of multiple biophysical inputs and cerebral cavernous malformation (CCM)-related genes in angiogenesis. Our research identifies heg1 and krit1 (ccm1) as crucial for the formation of endothelial cell-cell interfaces during anastomosis. In mutants of these genes, cell-cell interfaces are entangled with fragmented apical domains. A Heg1 live reporter demonstrated that Heg1 is dynamically involved in the oscillatory constrictions along cell-cell junctions, whilst a Myosin live reporter indicated that heg1 and krit1 mutants lack actomyosin contractility along these junctions. In wild-type embryos, the oscillatory contractile forces at junctions refine endothelial cell-cell interactions by straightening junctions and eliminating excessive cell-cell interfaces. Conversely, in the absence of junctional contractility, the cell-cell interfaces become entangled and prone to collapse in both mutants, preventing the formation of a continuous luminal space. By restoring junctional contractility via optogenetic activation of RhoA, contorted junctions are straightened and disentangled. Additionally, haemodynamic forces complement actomyosin contractile forces in resolving entangled cell-cell interfaces in both wild-type and mutant embryos. Overall, our study reveals that oscillatory contractile forces governed by Heg1 and Krit1 are essential for maintaining proper endothelial cell-cell interfaces and thus for the formation of a continuous luminal space, which is essential to generate a functional vasculature.</p>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":null,"pages":null},"PeriodicalIF":9.2,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142152990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sialyl Lewis X decorated integrin α3 on small extracellular vesicles promotes metastasis of bladder cancer via enhancing vascular permeability. 小细胞外囊泡上的 Sialyl Lewis X 修饰整合素 α3,通过增强血管通透性促进膀胱癌转移。
IF 9.2 1区 医学 Q1 PERIPHERAL VASCULAR DISEASE Pub Date : 2024-09-02 DOI: 10.1007/s10456-024-09947-3
Hui Feng, Liang Liang, Wenli Deng, Jiaojiao Gao, Xiang Li, Feng Guan

The permeability of blood vessels plays a crucial role in the spread of cancer cells, facilitating their metastasis at distant sites. Small extracellular vesicles (sEVs) are known to contribute to the metastasis of various cancers by crossing the blood vessel wall. However, the role of abnormal glycoconjugates on sEVs in tumor blood vessels remains unclear. Our study found elevated levels of fucosyltransferase VII (FUT7) and its product sialyl Lewis X (sLeX) in muscle-invasive bladder cancer (BLCA), with high levels of sLeX promoting the growth and invasion of BLCA cells. Further investigation revealed that sLeX was enriched in sEVs derived from BLCA. sLeX-decorated sEVs increased blood vessel permeability by disrupting the tight junctions of human umbilical vein endothelial cells (HUVECs). Using the glycoproteomics approach, we identified integrin α3 (ITGA3) as a sLeX-bearing glycoprotein in BLCA cells and their sEVs. Mechanically, sLeX modification stabilized ITGA3 by preventing its degradation in lysosomes. sEVs carrying sLeX-modified ITGA3 can be effectively internalized by HUVECs, leading to a decrease in the expression of tight junction protein. Conversely, silencing ITGA3 in sLeX-decorated sEVs restored tight junction proteins and reduced blood vessel permeability by inhibiting the MAPK pathway. Moreover, sLeX-modification of ITGA3 at Asn 265 in HUVECs promoted occludin dephosphorylation at Ser/Thr residues, followed by inducing its importin α1-mediated nuclear translocation, which resulted in the disruption of tight junctions. Our findings suggest a potential strategy for disrupting the formation of a metastatic microenvironment and preventing the spread of malignant bladder cancer.

血管的通透性在癌细胞扩散过程中起着至关重要的作用,可促进癌细胞向远处转移。众所周知,细胞外小泡(sEVs)可穿过血管壁,促进各种癌症的转移。然而,肿瘤血管中sEVs上的异常糖结合物的作用仍不清楚。我们的研究发现,肌层浸润性膀胱癌(BLCA)中的岩藻糖基转移酶 VII(FUT7)及其产物 sialyl Lewis X(sLeX)水平升高,高水平的 sLeX 会促进 BLCA 细胞的生长和侵袭。进一步的研究发现,sLeX 富集在来自 BLCA 的 sEVs 中。sLeX 装饰的 sEVs 通过破坏人脐静脉内皮细胞(HUVECs)的紧密连接增加了血管的通透性。利用糖蛋白组学方法,我们发现整合素α3(ITGA3)是 BLCA 细胞及其 sEV 中含有 sLeX 的糖蛋白。携带经 sLeX 修饰的 ITGA3 的 sEV 可被 HUVECs 有效内化,从而导致紧密连接蛋白的表达下降。相反,在经 sLeX 修饰的 sEV 中沉默 ITGA3 可恢复紧密连接蛋白,并通过抑制 MAPK 通路降低血管通透性。此外,sLeX修饰HUVECs中ITGA3的Asn 265位可促进闭塞素在Ser/Thr残基上去磷酸化,继而诱导其导入素α1介导的核转位,从而导致紧密连接的破坏。我们的研究结果为破坏转移微环境的形成和防止恶性膀胱癌的扩散提供了一种潜在的策略。
{"title":"Sialyl Lewis X decorated integrin α3 on small extracellular vesicles promotes metastasis of bladder cancer via enhancing vascular permeability.","authors":"Hui Feng, Liang Liang, Wenli Deng, Jiaojiao Gao, Xiang Li, Feng Guan","doi":"10.1007/s10456-024-09947-3","DOIUrl":"https://doi.org/10.1007/s10456-024-09947-3","url":null,"abstract":"<p><p>The permeability of blood vessels plays a crucial role in the spread of cancer cells, facilitating their metastasis at distant sites. Small extracellular vesicles (sEVs) are known to contribute to the metastasis of various cancers by crossing the blood vessel wall. However, the role of abnormal glycoconjugates on sEVs in tumor blood vessels remains unclear. Our study found elevated levels of fucosyltransferase VII (FUT7) and its product sialyl Lewis X (sLeX) in muscle-invasive bladder cancer (BLCA), with high levels of sLeX promoting the growth and invasion of BLCA cells. Further investigation revealed that sLeX was enriched in sEVs derived from BLCA. sLeX-decorated sEVs increased blood vessel permeability by disrupting the tight junctions of human umbilical vein endothelial cells (HUVECs). Using the glycoproteomics approach, we identified integrin α3 (ITGA3) as a sLeX-bearing glycoprotein in BLCA cells and their sEVs. Mechanically, sLeX modification stabilized ITGA3 by preventing its degradation in lysosomes. sEVs carrying sLeX-modified ITGA3 can be effectively internalized by HUVECs, leading to a decrease in the expression of tight junction protein. Conversely, silencing ITGA3 in sLeX-decorated sEVs restored tight junction proteins and reduced blood vessel permeability by inhibiting the MAPK pathway. Moreover, sLeX-modification of ITGA3 at Asn 265 in HUVECs promoted occludin dephosphorylation at Ser/Thr residues, followed by inducing its importin α1-mediated nuclear translocation, which resulted in the disruption of tight junctions. Our findings suggest a potential strategy for disrupting the formation of a metastatic microenvironment and preventing the spread of malignant bladder cancer.</p>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":null,"pages":null},"PeriodicalIF":9.2,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103709","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Senescent endothelial cells: a potential target for diabetic retinopathy. 衰老的内皮细胞:糖尿病视网膜病变的潜在靶点。
IF 9.2 1区 医学 Q1 PERIPHERAL VASCULAR DISEASE Pub Date : 2024-08-31 DOI: 10.1007/s10456-024-09943-7
Ying-Lu Liao, Yi-Fan Fang, Jia-Xing Sun, Guo-Rui Dou

Diabetic retinopathy (DR) is a diabetic complication that results in visual impairment and relevant retinal diseases. Current therapeutic strategies on DR primarily focus on antiangiogenic therapies, which particularly target vascular endothelial growth factor and its related signaling transduction. However, these therapies still have limitations due to the intricate pathogenesis of DR. Emerging studies have shown that premature senescence of endothelial cells (ECs) in a hyperglycemic environment is involved in the disease process of DR and plays multiple roles at different stages. Moreover, these surprising discoveries have driven the development of senotherapeutics and strategies targeting senescent endothelial cells (SECs), which present challenging but promising prospects in DR treatment. In this review, we focus on the inducers and mechanisms of EC senescence in the pathogenesis of DR and summarize the current research advances in the development of senotherapeutics and strategies that target SECs for DR treatment. Herein, we highlight the role played by key factors at different stages of EC senescence, which will be critical for facilitating the development of future innovative treatment strategies that target the different stages of senescence in DR.

糖尿病视网膜病变(DR)是一种糖尿病并发症,会导致视力损伤和相关视网膜疾病。目前针对糖尿病视网膜病变的治疗策略主要集中于抗血管生成疗法,尤其是针对血管内皮生长因子及其相关信号转导的疗法。然而,由于 DR 的发病机制错综复杂,这些疗法仍有局限性。新的研究表明,内皮细胞(ECs)在高血糖环境中的过早衰老参与了 DR 的发病过程,并在不同阶段发挥着多重作用。此外,这些惊人的发现推动了针对衰老内皮细胞(SECs)的衰老治疗药物和策略的开发,为 DR 的治疗带来了具有挑战性但又充满希望的前景。在这篇综述中,我们重点探讨了DR发病机制中内皮细胞衰老的诱因和机制,并总结了目前在开发针对SECs的衰老治疗药物和策略以治疗DR方面的研究进展。在此,我们强调了关键因素在心肌衰老的不同阶段所发挥的作用,这对促进未来针对 DR 不同衰老阶段开发创新治疗策略至关重要。
{"title":"Senescent endothelial cells: a potential target for diabetic retinopathy.","authors":"Ying-Lu Liao, Yi-Fan Fang, Jia-Xing Sun, Guo-Rui Dou","doi":"10.1007/s10456-024-09943-7","DOIUrl":"https://doi.org/10.1007/s10456-024-09943-7","url":null,"abstract":"<p><p>Diabetic retinopathy (DR) is a diabetic complication that results in visual impairment and relevant retinal diseases. Current therapeutic strategies on DR primarily focus on antiangiogenic therapies, which particularly target vascular endothelial growth factor and its related signaling transduction. However, these therapies still have limitations due to the intricate pathogenesis of DR. Emerging studies have shown that premature senescence of endothelial cells (ECs) in a hyperglycemic environment is involved in the disease process of DR and plays multiple roles at different stages. Moreover, these surprising discoveries have driven the development of senotherapeutics and strategies targeting senescent endothelial cells (SECs), which present challenging but promising prospects in DR treatment. In this review, we focus on the inducers and mechanisms of EC senescence in the pathogenesis of DR and summarize the current research advances in the development of senotherapeutics and strategies that target SECs for DR treatment. Herein, we highlight the role played by key factors at different stages of EC senescence, which will be critical for facilitating the development of future innovative treatment strategies that target the different stages of senescence in DR.</p>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":null,"pages":null},"PeriodicalIF":9.2,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Soluble FLT-1 in angiogenesis: pathophysiological roles and therapeutic implications. 血管生成中的可溶性 FLT-1:病理生理学作用和治疗意义。
IF 9.2 1区 医学 Q1 PERIPHERAL VASCULAR DISEASE Pub Date : 2024-08-29 DOI: 10.1007/s10456-024-09942-8
Layal Ei Wazan, Ariel Widhibrata, Guei-Sheung Liu

Fine-tuning angiogenesis, the development of new blood vessels, is essential for maintaining a healthy circulatory and lymphatic system. The small glycoprotein vascular endothelial growth factors (VEGF) are the key mediators in this process, binding to their corresponding membrane-bound VEGF receptors (VEGFRs) to activate angiogenesis signaling pathways. These pathways are crucial throughout human life as they are involved in lymphatic and vascular endothelial cell permeability, migration, proliferation, and survival. Neovascularization, the formation of abnormal blood vessels, occurs when there is a dysregulation of angiogenesis and can result in debilitating disease. Hence, VEGFRs have been widely studied to understand their role in disease-causing angiogenesis. VEGFR1, also known as Fms-like tyrosine kinase-1 (FLT-1), is also found in a soluble form, soluble FLT-1 or sFLT-1, which is known to act as a VEGF neutralizer. It is incorporated into anti-VEGF therapy, designed to treat diseases caused by neovascularization. Here we review the journey of sFLT-1 discovery and delve into the alternative splicing mechanism that creates the soluble receptor, its prevalence in disease states, and its use in current and future potential therapies.

微调血管生成(新血管的发育)对于维持健康的循环和淋巴系统至关重要。小糖蛋白血管内皮生长因子(VEGF)是这一过程的关键介质,它与相应的膜结合血管内皮生长因子受体(VEGFR)结合,激活血管生成信号通路。这些途径对人的一生都至关重要,因为它们参与淋巴和血管内皮细胞的通透性、迁移、增殖和存活。当血管生成失调时,就会出现血管新生,即异常血管的形成,并可能导致衰弱性疾病。因此,人们对血管内皮生长因子受体(VEGFR)进行了广泛研究,以了解它们在致病血管生成中的作用。VEGFR1又称Fms样酪氨酸激酶-1(FLT-1),也以可溶性形式存在,即可溶性FLT-1或sFLT-1。它被纳入抗血管内皮生长因子疗法,旨在治疗由新生血管引起的疾病。在此,我们回顾了发现 sFLT-1 的历程,并深入探讨了产生可溶性受体的替代剪接机制、其在疾病状态中的普遍性及其在当前和未来潜在疗法中的应用。
{"title":"Soluble FLT-1 in angiogenesis: pathophysiological roles and therapeutic implications.","authors":"Layal Ei Wazan, Ariel Widhibrata, Guei-Sheung Liu","doi":"10.1007/s10456-024-09942-8","DOIUrl":"https://doi.org/10.1007/s10456-024-09942-8","url":null,"abstract":"<p><p>Fine-tuning angiogenesis, the development of new blood vessels, is essential for maintaining a healthy circulatory and lymphatic system. The small glycoprotein vascular endothelial growth factors (VEGF) are the key mediators in this process, binding to their corresponding membrane-bound VEGF receptors (VEGFRs) to activate angiogenesis signaling pathways. These pathways are crucial throughout human life as they are involved in lymphatic and vascular endothelial cell permeability, migration, proliferation, and survival. Neovascularization, the formation of abnormal blood vessels, occurs when there is a dysregulation of angiogenesis and can result in debilitating disease. Hence, VEGFRs have been widely studied to understand their role in disease-causing angiogenesis. VEGFR1, also known as Fms-like tyrosine kinase-1 (FLT-1), is also found in a soluble form, soluble FLT-1 or sFLT-1, which is known to act as a VEGF neutralizer. It is incorporated into anti-VEGF therapy, designed to treat diseases caused by neovascularization. Here we review the journey of sFLT-1 discovery and delve into the alternative splicing mechanism that creates the soluble receptor, its prevalence in disease states, and its use in current and future potential therapies.</p>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":null,"pages":null},"PeriodicalIF":9.2,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The angiogenic role of the alpha 9-nicotinic acetylcholine receptor in triple-negative breast cancers. α-9-烟碱乙酰胆碱受体在三阴性乳腺癌中的血管生成作用。
IF 9.2 1区 医学 Q1 PERIPHERAL VASCULAR DISEASE Pub Date : 2024-08-23 DOI: 10.1007/s10456-024-09944-6
Sonjid Ochirbat, Tzu-Chun Kan, Chun-Chun Hsu, Tzu-Hsuan Huang, Kuo-Hsiang Chuang, Michael Chen, Chun-Chia Cheng, Chun-Chao Chang, Sri Rahayu, Jungshan Chang

Nicotine acts as an angiogenic factor by stimulating endogenous cholinergic pathways. Several subtypes of nicotinic acetylcholine receptors (nAChRs) have been demonstrated to be closely correlated to the formation and progression of different types of cancers. Recently, several studies have found that nicotinic acetylcholine receptors α9 (α9-nAChRs) are highly expressed in breast tumors, especially in tumors derived from patients diagnosed at advanced stages. In vitro studies have demonstrated that activation of α9-nAChRs is associated with increased proliferation and migration of breast cancer. To study the tumor-promoting role of α9-nAChRs in breast cancers, we generated a novel anti-α9-nAChR and methoxy-polyethylene glycol (mPEG) bispecific antibody (α9 BsAb) for dissecting the molecular mechanism on α9-nAChR-mediated tumor progression. Unexpectedly, we discovered the angiogenic role of α9-nAChR in nicotine-induced neovascularization of tumors. It revealed α9 BsAbs reduced nicotine-induced endothelial cell tube formation, blood vessel development in Matrigel plug assay and angiogenesis in microtube array membrane murine model (MTAMs). To unbraid the molecular mechanism of α9-nAChR in nicotine-mediated angiogenesis, the α9 BsAbs were applied and revealed the inhibitory roles in nicotine-induced production of hypoxia-inducible factor-2 alpha (HIF-2α), vascular endothelial growth factor A (VEGF-A), phosphorylated vascular endothelial growth factor receptor 2 (p-VEGFR2), vascular endothelial growth factor receptor 2 (VEGFR2) and matrix metalloproteinase-9 (MMP9) from triple-negative breast cancer cells (MDA-MB-231), suggesting α9-nAChRs played an important role in nicotine-induced angiogenesis. To confirm our results, the shRNA targeting α9-nAChRs was designed and used to silence α9-nAChR expression and then evaluated the angiogenic role of α9-nAChRs. The results showed α9 shRNA also played an inhibitory effect in blocking the nicotine-induced angiogenic signaling. Taken together, α9-nAChR played a critical role in nicotine-induced angiogenesis and this bispecific antibody (α9 BsAb) may serve as a potential therapeutic candidate for treatments of the α9 positive cancers.

尼古丁通过刺激内源性胆碱能通路起到血管生成因子的作用。尼古丁乙酰胆碱受体(nAChRs)的几种亚型已被证实与不同类型癌症的形成和发展密切相关。最近,一些研究发现,烟碱乙酰胆碱受体α9(α9-nAChRs)在乳腺肿瘤中高度表达,尤其是在晚期患者的肿瘤中。体外研究表明,α9-nAChRs 的激活与乳腺癌的增殖和迁移增加有关。为了研究α9-nAChRs在乳腺癌中的促瘤作用,我们制备了一种新型抗α9-nAChR和甲氧基聚乙二醇(mPEG)双特异性抗体(α9 BsAb),用于剖析α9-nAChR介导的肿瘤进展的分子机制。我们意外地发现了α9-nAChR在尼古丁诱导的肿瘤新生血管中的血管生成作用。研究发现,α9 BsAbs能减少尼古丁诱导的内皮细胞管形成、Matrigel塞试验中的血管发育以及微管阵列膜小鼠模型(MTAMs)中的血管生成。为了解开α9-nAChR在尼古丁介导的血管生成中的分子机制,应用α9 BsAbs揭示了其在尼古丁诱导的缺氧诱导因子-2α(HIF-2α)、血管内皮生长因子A(VEGF-A)生成中的抑制作用、这表明α9-nAChRs 在烟碱诱导的血管生成中发挥了重要作用。为了证实我们的研究结果,研究人员设计了靶向α9-nAChRs的shRNA,并利用它沉默了α9-nAChRs的表达,然后评估了α9-nAChRs的血管生成作用。结果表明,α9 shRNA 在阻断尼古丁诱导的血管生成信号方面也起到了抑制作用。综上所述,α9-nAChR在尼古丁诱导的血管生成中起着关键作用,这种双特异性抗体(α9 BsAb)可作为治疗α9阳性癌症的潜在候选疗法。
{"title":"The angiogenic role of the alpha 9-nicotinic acetylcholine receptor in triple-negative breast cancers.","authors":"Sonjid Ochirbat, Tzu-Chun Kan, Chun-Chun Hsu, Tzu-Hsuan Huang, Kuo-Hsiang Chuang, Michael Chen, Chun-Chia Cheng, Chun-Chao Chang, Sri Rahayu, Jungshan Chang","doi":"10.1007/s10456-024-09944-6","DOIUrl":"https://doi.org/10.1007/s10456-024-09944-6","url":null,"abstract":"<p><p>Nicotine acts as an angiogenic factor by stimulating endogenous cholinergic pathways. Several subtypes of nicotinic acetylcholine receptors (nAChRs) have been demonstrated to be closely correlated to the formation and progression of different types of cancers. Recently, several studies have found that nicotinic acetylcholine receptors α9 (α9-nAChRs) are highly expressed in breast tumors, especially in tumors derived from patients diagnosed at advanced stages. In vitro studies have demonstrated that activation of α9-nAChRs is associated with increased proliferation and migration of breast cancer. To study the tumor-promoting role of α9-nAChRs in breast cancers, we generated a novel anti-α9-nAChR and methoxy-polyethylene glycol (mPEG) bispecific antibody (α9 BsAb) for dissecting the molecular mechanism on α9-nAChR-mediated tumor progression. Unexpectedly, we discovered the angiogenic role of α9-nAChR in nicotine-induced neovascularization of tumors. It revealed α9 BsAbs reduced nicotine-induced endothelial cell tube formation, blood vessel development in Matrigel plug assay and angiogenesis in microtube array membrane murine model (MTAMs). To unbraid the molecular mechanism of α9-nAChR in nicotine-mediated angiogenesis, the α9 BsAbs were applied and revealed the inhibitory roles in nicotine-induced production of hypoxia-inducible factor-2 alpha (HIF-2α), vascular endothelial growth factor A (VEGF-A), phosphorylated vascular endothelial growth factor receptor 2 (p-VEGFR2), vascular endothelial growth factor receptor 2 (VEGFR2) and matrix metalloproteinase-9 (MMP9) from triple-negative breast cancer cells (MDA-MB-231), suggesting α9-nAChRs played an important role in nicotine-induced angiogenesis. To confirm our results, the shRNA targeting α9-nAChRs was designed and used to silence α9-nAChR expression and then evaluated the angiogenic role of α9-nAChRs. The results showed α9 shRNA also played an inhibitory effect in blocking the nicotine-induced angiogenic signaling. Taken together, α9-nAChR played a critical role in nicotine-induced angiogenesis and this bispecific antibody (α9 BsAb) may serve as a potential therapeutic candidate for treatments of the α9 positive cancers.</p>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":null,"pages":null},"PeriodicalIF":9.2,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142034952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maternal serum PlGF associates with 3D power doppler ultrasound markers of utero-placental vascular development in the first trimester: the rotterdam periconception cohort. 母体血清 PlGF 与妊娠头三个月子宫胎盘血管发育的 3D 功率多普勒超声标记物的关系:鹿特丹围孕期队列。
IF 9.2 1区 医学 Q1 PERIPHERAL VASCULAR DISEASE Pub Date : 2024-08-14 DOI: 10.1007/s10456-024-09939-3
Eline S de Vos, A H Jan Danser, Anton H J Koning, Sten P Willemsen, Lotte E van der Meeren, Eric A P Steegers, Régine P M Steegers-Theunissen, Annemarie G M G J Mulders

Objective (s): Circulating angiogenic factors are used for prediction of placenta-related complications, but their associations with first-trimester placental development is unknown. This study investigates associations between maternal angiogenic factors and utero-placental vascular volume (uPVV) and utero-placental vascular skeleton (uPVS) as novel imaging markers of volumetric and morphologic (branching) development of the first-trimester utero-placental vasculature.

Methods: In 185 ongoing pregnancies from the VIRTUAL Placenta study, a subcohort of the ongoing prospective Rotterdam Periconception cohort, three-dimensional power Doppler ultrasounds of the placenta were obtained at 7-9-11 weeks gestational age (GA). The uPVV was measured as a parameter of volumetric development and reported the vascular quantity in cm3. The uPVS was generated as a parameter of morphologic (branching) development and reported the number of end-, bifurcation- crossing- or vessel points and total vascular length. At 11 weeks GA, maternal serum biomarkers suggested to reflect placental (vascular) development were assessed: placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng). sFlt-1/PlGF and sEng/PlGF ratios were calculated. Multivariable linear regression with adjustments was used to estimate associations between serum biomarkers and uPVV and uPVS trajectories.

Results: Serum PlGF was positively associated with uPVV and uPVS development (uPVV: β = 0.39, 95% CI = 0.15;0.64; bifurcation points: β = 4.64, 95% CI = 0.04;9.25; crossing points: β = 4.01, 95% CI = 0.65;7.37; total vascular length: β = 13.33, 95% CI = 3.09;23.58, all p-values < 0.05). sEng/PlGF ratio was negatively associated with uPVV and uPVS development. We observed no associations between sFlt-1, sEng or sFlt-1/PlGF ratio and uPVV and uPVS development.

Conclusion(s): Higher first-trimester maternal serum PlGF concentration is associated with increased first-trimester utero-placental vascular development as reflected by uPVV and uPVS. Clinical trial registration number Dutch Trial Register NTR6854.

目的:循环血管生成因子可用于预测胎盘相关并发症,但它们与第一胎胎盘发育的关系尚不清楚。本研究探讨了母体血管生成因子与子宫胎盘血管体积(uPVV)和子宫胎盘血管骨架(uPVS)之间的关系,它们是第一孕期子宫胎盘血管体积和形态(分支)发育的新型成像标记:VIRTUAL胎盘研究是鹿特丹前瞻性围孕期队列的一个子队列,在该研究的185名孕妇中,于胎龄7-9-11周时进行了胎盘三维动力多普勒超声检查。uPVV作为体积发育参数进行测量,并报告以立方厘米为单位的血管数量。uPVS是作为形态(分支)发育参数生成的,报告了血管末端、分叉交叉点或血管点的数量以及血管总长度。怀孕 11 周时,评估了反映胎盘(血管)发育的母体血清生物标志物:胎盘生长因子(PlGF)、可溶性酪氨酸激酶-1(sFlt-1)和可溶性内胚叶素(sEng)。使用调整后的多变量线性回归估计血清生物标志物与uPVV和uPVS轨迹之间的关系:结果:血清 PlGF 与 uPVV 和 uPVS 的发展呈正相关(uPVV:β = 0.39,95% CI = 0.15;0.64;分叉点:β = 4.64,95% CI = 0.04;9.25;交叉点:β = 4.01,95% CI = 0.65;7.37;血管总长度:β = 13.33,95% CI = 3.09;23.58,所有 p 值 结论:血清 PlGF 与 uPVV 和 uPVS 的发展呈正相关:母体血清中 PlGF 浓度越高,胎儿第一妊娠期子宫胎盘血管发育就越快,uPVV 和 uPVS 反映了这一点。临床试验注册号:荷兰试验注册 NTR6854。
{"title":"Maternal serum PlGF associates with 3D power doppler ultrasound markers of utero-placental vascular development in the first trimester: the rotterdam periconception cohort.","authors":"Eline S de Vos, A H Jan Danser, Anton H J Koning, Sten P Willemsen, Lotte E van der Meeren, Eric A P Steegers, Régine P M Steegers-Theunissen, Annemarie G M G J Mulders","doi":"10.1007/s10456-024-09939-3","DOIUrl":"https://doi.org/10.1007/s10456-024-09939-3","url":null,"abstract":"<p><strong>Objective (s): </strong>Circulating angiogenic factors are used for prediction of placenta-related complications, but their associations with first-trimester placental development is unknown. This study investigates associations between maternal angiogenic factors and utero-placental vascular volume (uPVV) and utero-placental vascular skeleton (uPVS) as novel imaging markers of volumetric and morphologic (branching) development of the first-trimester utero-placental vasculature.</p><p><strong>Methods: </strong>In 185 ongoing pregnancies from the VIRTUAL Placenta study, a subcohort of the ongoing prospective Rotterdam Periconception cohort, three-dimensional power Doppler ultrasounds of the placenta were obtained at 7-9-11 weeks gestational age (GA). The uPVV was measured as a parameter of volumetric development and reported the vascular quantity in cm<sup>3</sup>. The uPVS was generated as a parameter of morphologic (branching) development and reported the number of end-, bifurcation- crossing- or vessel points and total vascular length. At 11 weeks GA, maternal serum biomarkers suggested to reflect placental (vascular) development were assessed: placental growth factor (PlGF), soluble fms-like tyrosine kinase-1 (sFlt-1) and soluble endoglin (sEng). sFlt-1/PlGF and sEng/PlGF ratios were calculated. Multivariable linear regression with adjustments was used to estimate associations between serum biomarkers and uPVV and uPVS trajectories.</p><p><strong>Results: </strong>Serum PlGF was positively associated with uPVV and uPVS development (uPVV: β = 0.39, 95% CI = 0.15;0.64; bifurcation points: β = 4.64, 95% CI = 0.04;9.25; crossing points: β = 4.01, 95% CI = 0.65;7.37; total vascular length: β = 13.33, 95% CI = 3.09;23.58, all p-values < 0.05). sEng/PlGF ratio was negatively associated with uPVV and uPVS development. We observed no associations between sFlt-1, sEng or sFlt-1/PlGF ratio and uPVV and uPVS development.</p><p><strong>Conclusion(s): </strong>Higher first-trimester maternal serum PlGF concentration is associated with increased first-trimester utero-placental vascular development as reflected by uPVV and uPVS. Clinical trial registration number Dutch Trial Register NTR6854.</p>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":null,"pages":null},"PeriodicalIF":9.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141981537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PDPN/CCL2/STAT3 feedback loop alter CAF heterogeneity to promote angiogenesis in colorectal cancer. PDPN/CCL2/STAT3反馈回路改变CAF异质性,促进结直肠癌血管生成。
IF 9.2 1区 医学 Q1 PERIPHERAL VASCULAR DISEASE Pub Date : 2024-08-08 DOI: 10.1007/s10456-024-09941-9
Die Yu, Hanzheng Xu, Jinzhe Zhou, Kai Fang, Zekun Zhao, Ke Xu

Colorectal cancer (CRC) is one of the common clinical malignancies and the fourth leading cause of cancer-related death in the world. The tumor microenvironment (TME) plays a crucial role in promoting tumor angiogenesis, and cancer-associated fibroblasts (CAFs) are one of the key components of the tumor microenvironment. However, due to the high heterogeneity of CAFs, elucidating the molecular mechanism of CAF-mediated tumor angiogenesis remained elusive. In our study, we found that there is pro-angiogenic functional heterogeneity of CAFs in colorectal cancer and we clarified that Podoplanin (PDPN) can specifically label CAF subpopulations with pro-angiogenic functions. We also revealed that PDPN + CAF could maintain CAF heterogeneity by forming a PDPN/CCL2/STAT3 feedback loop through autocrine CCL2, while activate STAT3 signaling pathway in endothelial cells to promote angiogenesis through paracrine CCL2. We demonstrated WP1066 could inhibit colorectal cancer angiogenesis by blocking both the PDPN/CCL2/STAT3 feedback loop in CAFs and the STAT3 signaling pathway in endothelial cells. Altogether, our study suggests that STAT3 could be a potential therapeutic target for blocking angiogenesis in colorectal cancer. We provide theoretical basis and new therapeutic strategies for the clinical treatment of colorectal cancer.

结直肠癌(CRC)是常见的临床恶性肿瘤之一,也是全球第四大癌症相关死亡原因。肿瘤微环境(TME)在促进肿瘤血管生成方面起着至关重要的作用,而癌相关成纤维细胞(CAFs)是肿瘤微环境的关键组成部分之一。然而,由于CAFs的高度异质性,阐明CAF介导肿瘤血管生成的分子机制仍是一个难题。在我们的研究中,我们发现结直肠癌中的CAFs存在促血管生成功能异质性,并明确了Podoplanin(PDPN)可特异性标记具有促血管生成功能的CAF亚群。我们还发现,PDPN + CAF 可通过自分泌的 CCL2 形成 PDPN/CCL2/STAT3 反馈环,从而维持 CAF 的异质性,同时通过旁分泌的 CCL2 激活内皮细胞中的 STAT3 信号通路,促进血管生成。我们的研究表明,WP1066可通过阻断CAFs中的PDPN/CCL2/STAT3反馈环和内皮细胞中的STAT3信号通路抑制结直肠癌血管生成。总之,我们的研究表明,STAT3 可能是阻断结直肠癌血管生成的潜在治疗靶点。我们的研究为结直肠癌的临床治疗提供了理论依据和新的治疗策略。
{"title":"PDPN/CCL2/STAT3 feedback loop alter CAF heterogeneity to promote angiogenesis in colorectal cancer.","authors":"Die Yu, Hanzheng Xu, Jinzhe Zhou, Kai Fang, Zekun Zhao, Ke Xu","doi":"10.1007/s10456-024-09941-9","DOIUrl":"https://doi.org/10.1007/s10456-024-09941-9","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is one of the common clinical malignancies and the fourth leading cause of cancer-related death in the world. The tumor microenvironment (TME) plays a crucial role in promoting tumor angiogenesis, and cancer-associated fibroblasts (CAFs) are one of the key components of the tumor microenvironment. However, due to the high heterogeneity of CAFs, elucidating the molecular mechanism of CAF-mediated tumor angiogenesis remained elusive. In our study, we found that there is pro-angiogenic functional heterogeneity of CAFs in colorectal cancer and we clarified that Podoplanin (PDPN) can specifically label CAF subpopulations with pro-angiogenic functions. We also revealed that PDPN + CAF could maintain CAF heterogeneity by forming a PDPN/CCL2/STAT3 feedback loop through autocrine CCL2, while activate STAT3 signaling pathway in endothelial cells to promote angiogenesis through paracrine CCL2. We demonstrated WP1066 could inhibit colorectal cancer angiogenesis by blocking both the PDPN/CCL2/STAT3 feedback loop in CAFs and the STAT3 signaling pathway in endothelial cells. Altogether, our study suggests that STAT3 could be a potential therapeutic target for blocking angiogenesis in colorectal cancer. We provide theoretical basis and new therapeutic strategies for the clinical treatment of colorectal cancer.</p>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":null,"pages":null},"PeriodicalIF":9.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141900771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial control of hypoxia-induced pathological retinal angiogenesis 线粒体控制缺氧诱导的病理性视网膜血管生成
IF 9.8 1区 医学 Q1 PERIPHERAL VASCULAR DISEASE Pub Date : 2024-08-03 DOI: 10.1007/s10456-024-09940-w
Hitomi Yagi, Myriam Boeck, Shen Nian, Katherine Neilsen, Chaomei Wang, Jeff Lee, Yan Zeng, Matthew Grumbine, Ian R. Sweet, Taku Kasai, Kazuno Negishi, Sasha A. Singh, Masanori Aikawa, Ann Hellström, Lois E. H. Smith, Zhongjie Fu

Objective

Pathological retinal neovascularization is vision-threatening. In mouse oxygen-induced retinopathy (OIR) we sought to define mitochondrial respiration changes longitudinally during hyperoxia-induced vessel loss and hypoxia-induced neovascularization, and to test interventions addressing those changes to prevent neovascularization.

Methods

OIR was induced in C57BL/6J mice and retinal vasculature was examined at maximum neovessel formation. We assessed total proteome changes and the ratio of mitochondrial to nuclear DNA copy numbers (mtDNA/nDNA) of OIR vs. control retinas, and mitochondrial oxygen consumption rates (OCR) in ex vivo OIR vs. control retinas (BaroFuse). Pyruvate vs. vehicle control was supplemented to OIR mice either prior to or during neovessel formation.

Results

In OIR vs. control retinas, global proteomics showed decreased retinal mitochondrial respiration at peak neovascularization. OCR and mtDNA/nDNA were also decreased at peak neovascularization suggesting impaired mitochondrial respiration. In vivo pyruvate administration during but not prior to neovessel formation (in line with mitochondrial activity time course) suppressed NV.

Conclusions

Mitochondrial energetics were suppressed during retinal NV in OIR. Appropriately timed supplementation of pyruvate may be a novel approach in neovascular retinal diseases.

目的病理性视网膜新生血管会威胁视力。在小鼠氧诱导视网膜病变(OIR)中,我们试图确定高氧诱导血管缺失和低氧诱导新生血管形成过程中线粒体呼吸的纵向变化,并测试针对这些变化的干预措施,以防止新生血管形成。我们评估了OIR与对照组视网膜的总蛋白质组变化、线粒体与核DNA拷贝数之比(mtDNA/nDNA),以及OIR与对照组视网膜(BaroFuse)的线粒体耗氧率(OCR)。结果在 OIR 与对照组视网膜中,全蛋白质组学显示在新生血管形成高峰期视网膜线粒体呼吸减少。在新生血管形成高峰期,OCR 和 mtDNA/nDNA 也出现下降,表明线粒体呼吸功能受损。在新血管形成期间而非之前(与线粒体活动时间进程一致)体内注射丙酮酸可抑制新血管形成。适时补充丙酮酸可能是治疗新生血管性视网膜疾病的一种新方法。
{"title":"Mitochondrial control of hypoxia-induced pathological retinal angiogenesis","authors":"Hitomi Yagi, Myriam Boeck, Shen Nian, Katherine Neilsen, Chaomei Wang, Jeff Lee, Yan Zeng, Matthew Grumbine, Ian R. Sweet, Taku Kasai, Kazuno Negishi, Sasha A. Singh, Masanori Aikawa, Ann Hellström, Lois E. H. Smith, Zhongjie Fu","doi":"10.1007/s10456-024-09940-w","DOIUrl":"https://doi.org/10.1007/s10456-024-09940-w","url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Objective</h3><p>Pathological retinal neovascularization is vision-threatening. In mouse oxygen-induced retinopathy (OIR) we sought to define mitochondrial respiration changes longitudinally during hyperoxia-induced vessel loss and hypoxia-induced neovascularization, and to test interventions addressing those changes to prevent neovascularization.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>OIR was induced in C57BL/6J mice and retinal vasculature was examined at maximum neovessel formation. We assessed total proteome changes and the ratio of mitochondrial to nuclear DNA copy numbers (mtDNA/nDNA) of OIR vs. control retinas, and mitochondrial oxygen consumption rates (OCR) in ex vivo OIR vs. control retinas (BaroFuse). Pyruvate vs. vehicle control was supplemented to OIR mice either prior to or during neovessel formation.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>In OIR vs. control retinas, global proteomics showed decreased retinal mitochondrial respiration at peak neovascularization. OCR and mtDNA/nDNA were also decreased at peak neovascularization suggesting impaired mitochondrial respiration. In vivo pyruvate administration during but not prior to neovessel formation (in line with mitochondrial activity time course) suppressed NV.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>Mitochondrial energetics were suppressed during retinal NV in OIR. Appropriately timed supplementation of pyruvate may be a novel approach in neovascular retinal diseases.</p>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":null,"pages":null},"PeriodicalIF":9.8,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141887393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Somatic BrafV600E mutation in the cerebral endothelium induces brain arteriovenous malformations. 脑内皮中的体细胞BrafV600E突变会诱发脑动静脉畸形。
IF 9.2 1区 医学 Q1 PERIPHERAL VASCULAR DISEASE Pub Date : 2024-08-01 Epub Date: 2024-05-03 DOI: 10.1007/s10456-024-09918-8
Tianqi Tu, Jiaxing Yu, Chendan Jiang, Shikun Zhang, Jingwei Li, Jian Ren, Shiju Zhang, Yuan Zhou, Ziwei Cui, Haohan Lu, Xiaosheng Meng, Zhanjing Wang, Dong Xing, Hongqi Zhang, Tao Hong

Current treatments of brain arteriovenous malformation (BAVM) are associated with considerable risks and at times incomplete efficacy. Therefore, a clinically consistent animal model of BAVM is urgently needed to investigate its underlying biological mechanisms and develop innovative treatment strategies. Notably, existing mouse models have limited utility due to heterogenous and untypical phenotypes of AVM lesions. Here we developed a novel mouse model of sporadic BAVM that is consistent with clinical manifestations in humans. Mice with BrafV600E mutations in brain ECs developed BAVM closely resembled that of human lesions. This strategy successfully induced BAVMs in mice across different age groups and within various brain regions. Pathological features of BAVM were primarily dilated blood vessels with reduced vascular wall stability, accompanied by spontaneous hemorrhage and neuroinflammation. Single-cell sequencing revealed differentially expressed genes that were related to the cytoskeleton, cell motility, and intercellular junctions. Early administration of Dabrafenib was found to be effective in slowing the progression of BAVMs; however, its efficacy in treating established BAVM lesions remained uncertain. Taken together, our proposed approach successfully induced BAVM that closely resembled human BAVM lesions in mice, rendering the model suitable for investigating the pathogenesis of BAVM and assessing potential therapeutic strategies.

目前治疗脑动静脉畸形(BAVM)的方法存在相当大的风险,有时疗效不佳。因此,迫切需要一种与临床一致的脑动静脉畸形动物模型来研究其潜在的生物学机制并开发创新的治疗策略。值得注意的是,现有的小鼠模型由于 AVM 病变的异质性和非典型表型而实用性有限。在这里,我们建立了一种与人类临床表现一致的散发性脑动静脉畸形的新型小鼠模型。脑EC发生BrafV600E突变的小鼠发生的BAVM与人类病变非常相似。这种策略成功地诱导了不同年龄组和不同脑区的小鼠发生脑血管瘤。BAVM的病理特征主要是血管扩张,血管壁稳定性降低,伴有自发性出血和神经炎症。单细胞测序发现了与细胞骨架、细胞运动和细胞间连接有关的差异表达基因。研究发现,早期服用达拉非尼能有效延缓脑动静脉畸形的进展;然而,它对治疗已形成的脑动静脉畸形病灶的疗效仍不确定。总之,我们提出的方法成功地诱导出了与人类小鼠BAVM病变非常相似的BAVM,使该模型适用于研究BAVM的发病机制和评估潜在的治疗策略。
{"title":"Somatic Braf<sup>V600E</sup> mutation in the cerebral endothelium induces brain arteriovenous malformations.","authors":"Tianqi Tu, Jiaxing Yu, Chendan Jiang, Shikun Zhang, Jingwei Li, Jian Ren, Shiju Zhang, Yuan Zhou, Ziwei Cui, Haohan Lu, Xiaosheng Meng, Zhanjing Wang, Dong Xing, Hongqi Zhang, Tao Hong","doi":"10.1007/s10456-024-09918-8","DOIUrl":"10.1007/s10456-024-09918-8","url":null,"abstract":"<p><p>Current treatments of brain arteriovenous malformation (BAVM) are associated with considerable risks and at times incomplete efficacy. Therefore, a clinically consistent animal model of BAVM is urgently needed to investigate its underlying biological mechanisms and develop innovative treatment strategies. Notably, existing mouse models have limited utility due to heterogenous and untypical phenotypes of AVM lesions. Here we developed a novel mouse model of sporadic BAVM that is consistent with clinical manifestations in humans. Mice with Braf<sup>V600E</sup> mutations in brain ECs developed BAVM closely resembled that of human lesions. This strategy successfully induced BAVMs in mice across different age groups and within various brain regions. Pathological features of BAVM were primarily dilated blood vessels with reduced vascular wall stability, accompanied by spontaneous hemorrhage and neuroinflammation. Single-cell sequencing revealed differentially expressed genes that were related to the cytoskeleton, cell motility, and intercellular junctions. Early administration of Dabrafenib was found to be effective in slowing the progression of BAVMs; however, its efficacy in treating established BAVM lesions remained uncertain. Taken together, our proposed approach successfully induced BAVM that closely resembled human BAVM lesions in mice, rendering the model suitable for investigating the pathogenesis of BAVM and assessing potential therapeutic strategies.</p>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":null,"pages":null},"PeriodicalIF":9.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140849011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IC100, a humanized therapeutic monoclonal anti-ASC antibody alleviates oxygen-induced retinopathy in mice. IC100是一种人源化治疗性单克隆抗ASC抗体,可减轻氧气诱导的小鼠视网膜病变。
IF 9.2 1区 医学 Q1 PERIPHERAL VASCULAR DISEASE Pub Date : 2024-08-01 Epub Date: 2024-05-06 DOI: 10.1007/s10456-024-09917-9
Huijun Yuan, Shaoyi Chen, Matthew R Duncan, Juan Pablo de Rivero Vaccari, Robert W Keane, W Dalton Dietrich, Tsung-Han Chou, Merline Benny, Augusto F Schmidt, Karen Young, Kevin K Park, Vittorio Porciatti, M Elizabeth Hartnett, Shu Wu

Background: Retinopathy of prematurity (ROP), which often presents with bronchopulmonary dysplasia (BPD), is among the most common morbidities affecting extremely premature infants and is a leading cause of severe vision impairment in children worldwide. Activations of the inflammasome cascade and microglia have been implicated in playing a role in the development of both ROP and BPD. Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is pivotal in inflammasome assembly. Utilizing mouse models of both oxygen-induced retinopathy (OIR) and BPD, this study was designed to test the hypothesis that hyperoxia induces ASC speck formation, which leads to microglial activation and retinopathy, and that inhibition of ASC speck formation by a humanized monoclonal antibody, IC100, directed against ASC, will ameliorate microglial activation and abnormal retinal vascular formation.

Methods: We first tested ASC speck formation in the retina of ASC-citrine reporter mice expressing ASC fusion protein with a C-terminal citrine (fluorescent GFP isoform) using a BPD model that causes both lung and eye injury by exposing newborn mice to room air (RA) or 85% O2 from postnatal day (P) 1 to P14. The retinas were dissected on P14 and retinal flat mounts were used to detect vascular endothelium with AF-594-conjugated isolectin B4 (IB4) and citrine-tagged ASC specks. To assess the effects of IC100 on an OIR model, newborn ASC citrine reporter mice and wildtype mice (C57BL/6 J) were exposed to RA from P1 to P6, then 75% O2 from P7 to P11, and then to RA from P12 to P18. At P12 mice were randomized to the following groups: RA with placebo PBS (RA-PBS), O2 with PBS (O2-PBS), O2 + IC100 intravitreal injection (O2-IC100-IVT), and O2 + IC100 intraperitoneal injection (O2-IC100-IP). Retinal vascularization was evaluated by flat mount staining with IB4. Microglial activation was detected by immunofluorescence staining for allograft inflammatory factor 1 (AIF-1) and CD206. Retinal structure was analyzed on H&E-stained sections, and function was analyzed by pattern electroretinography (PERG). RNA-sequencing (RNA-seq) of the retinas was performed to determine the transcriptional effects of IC100 treatment in OIR.

Results: ASC specks were significantly increased in the retinas by hyperoxia exposure and colocalized with the abnormal vasculature in both BPD and OIR models, and this was associated with increased microglial activation. Treatment with IC100-IVT or IC100-IP significantly reduced vaso-obliteration and intravitreal neovascularization. IC100-IVT treatment also reduced retinal microglial activation, restored retinal structure, and improved retinal function. RNA-seq showed that IC100 treatment corrected the induction of genes associated with angiogenesis, leukocyte migration, and VEGF signalin

背景:早产儿视网膜病变(ROP)通常伴有支气管肺发育不良(BPD),是影响极早产儿的最常见疾病之一,也是全球儿童视力严重受损的主要原因。炎性体级联和小胶质细胞的活化已被认为在 ROP 和 BPD 的发病过程中扮演了重要角色。含有卡巴酶招募结构域(ASC)的凋亡相关斑点样蛋白在炎症小体的组装中起着关键作用。本研究利用氧诱导视网膜病变(OIR)和BPD小鼠模型,旨在验证以下假设:高氧诱导ASC斑点形成,从而导致小胶质细胞活化和视网膜病变;通过针对ASC的人源化单克隆抗体IC100抑制ASC斑点形成,可改善小胶质细胞活化和视网膜血管异常形成:我们首先使用一种 BPD 模型检测了表达 ASC 与 C 端黄素(荧光 GFP 同工型)融合蛋白的 ASC-黄素报告小鼠视网膜中 ASC斑点的形成情况,该模型通过将新生小鼠从出生后第 1 天到第 14 天置于室内空气(RA)或 85%O2 中,导致肺部和眼部损伤。在 P14 日解剖视网膜,用 AF-594 结合物异选择素 B4 (IB4) 和黄铜标记的 ASC斑点检测视网膜平片的血管内皮。为了评估 IC100 对 OIR 模型的影响,新生 ASC 黄素报告小鼠和野生型小鼠(C57BL/6 J)从 P1 到 P6 暴露于 RA,然后从 P7 到 P11 暴露于 75% O2,再从 P12 到 P18 暴露于 RA。在 P12 小鼠被随机分为以下几组:RA 组与安慰剂 PBS 组(RA-PBS)、O2 组与 PBS 组(O2-PBS)、O2 + IC100 玻璃体内注射组(O2-IC100-IVT)和 O2 + IC100 腹腔注射组(O2-IC100-IP)。视网膜血管通过 IB4 平片染色进行评估。通过免疫荧光染色异体移植物炎症因子1(AIF-1)和CD206检测小胶质细胞的活化。H&E染色切片分析视网膜结构,模式视网膜电图(PERG)分析视网膜功能。对视网膜进行了 RNA 序列分析(RNA-seq),以确定 IC100 治疗对 OIR 的转录影响:结果:在BPD和OIR模型中,视网膜中的ASC斑点因高氧暴露而明显增加,并与异常血管共定位,这与小胶质细胞活化增加有关。使用 IC100-IVT 或 IC100-IP 治疗可显著减少血管淤血和玻璃体内新生血管。IC100-IVT 治疗还降低了视网膜小胶质细胞的活化,恢复了视网膜结构,改善了视网膜功能。RNA-seq显示,IC100治疗纠正了氧气对血管生成、白细胞迁移和血管内皮生长因子信号转导相关基因的诱导。IC100 还纠正了 O2 对细胞连接组装、神经元投射和神经元识别相关基因的抑制作用:这些数据证明了 ASC 在 OIR 发病机制中的关键作用,以及人源化治疗性抗 ASC 抗体在治疗 OIR 小鼠中的疗效。因此,这种抗 ASC 抗体有可能被用于治疗与氧应激和视网膜病变相关的疾病,如 ROP。
{"title":"IC100, a humanized therapeutic monoclonal anti-ASC antibody alleviates oxygen-induced retinopathy in mice.","authors":"Huijun Yuan, Shaoyi Chen, Matthew R Duncan, Juan Pablo de Rivero Vaccari, Robert W Keane, W Dalton Dietrich, Tsung-Han Chou, Merline Benny, Augusto F Schmidt, Karen Young, Kevin K Park, Vittorio Porciatti, M Elizabeth Hartnett, Shu Wu","doi":"10.1007/s10456-024-09917-9","DOIUrl":"10.1007/s10456-024-09917-9","url":null,"abstract":"<p><strong>Background: </strong>Retinopathy of prematurity (ROP), which often presents with bronchopulmonary dysplasia (BPD), is among the most common morbidities affecting extremely premature infants and is a leading cause of severe vision impairment in children worldwide. Activations of the inflammasome cascade and microglia have been implicated in playing a role in the development of both ROP and BPD. Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) is pivotal in inflammasome assembly. Utilizing mouse models of both oxygen-induced retinopathy (OIR) and BPD, this study was designed to test the hypothesis that hyperoxia induces ASC speck formation, which leads to microglial activation and retinopathy, and that inhibition of ASC speck formation by a humanized monoclonal antibody, IC100, directed against ASC, will ameliorate microglial activation and abnormal retinal vascular formation.</p><p><strong>Methods: </strong>We first tested ASC speck formation in the retina of ASC-citrine reporter mice expressing ASC fusion protein with a C-terminal citrine (fluorescent GFP isoform) using a BPD model that causes both lung and eye injury by exposing newborn mice to room air (RA) or 85% O<sub>2</sub> from postnatal day (P) 1 to P14. The retinas were dissected on P14 and retinal flat mounts were used to detect vascular endothelium with AF-594-conjugated isolectin B4 (IB4) and citrine-tagged ASC specks. To assess the effects of IC100 on an OIR model, newborn ASC citrine reporter mice and wildtype mice (C57BL/6 J) were exposed to RA from P1 to P6, then 75% O<sub>2</sub> from P7 to P11, and then to RA from P12 to P18. At P12 mice were randomized to the following groups: RA with placebo PBS (RA-PBS), O<sub>2</sub> with PBS (O<sub>2</sub>-PBS), O<sub>2</sub> + IC100 intravitreal injection (O<sub>2</sub>-IC100-IVT), and O<sub>2</sub> + IC100 intraperitoneal injection (O<sub>2</sub>-IC100-IP). Retinal vascularization was evaluated by flat mount staining with IB4. Microglial activation was detected by immunofluorescence staining for allograft inflammatory factor 1 (AIF-1) and CD206. Retinal structure was analyzed on H&E-stained sections, and function was analyzed by pattern electroretinography (PERG). RNA-sequencing (RNA-seq) of the retinas was performed to determine the transcriptional effects of IC100 treatment in OIR.</p><p><strong>Results: </strong>ASC specks were significantly increased in the retinas by hyperoxia exposure and colocalized with the abnormal vasculature in both BPD and OIR models, and this was associated with increased microglial activation. Treatment with IC100-IVT or IC100-IP significantly reduced vaso-obliteration and intravitreal neovascularization. IC100-IVT treatment also reduced retinal microglial activation, restored retinal structure, and improved retinal function. RNA-seq showed that IC100 treatment corrected the induction of genes associated with angiogenesis, leukocyte migration, and VEGF signalin","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":null,"pages":null},"PeriodicalIF":9.2,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303442/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140856165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Angiogenesis
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1