Lingzhu Bian, Chen Liu, Zhen Zhang, Yingke Huang, Xinyu Pan, Yi Zhang, Jiaou Wang, Pavel Dudin, Jose Avila, Zhesheng Chen, Yuhui Dong
{"title":"Automatic extraction of fine structural information in angle-resolved photoemission spectroscopy by multi-stage clustering algorithm","authors":"Lingzhu Bian, Chen Liu, Zhen Zhang, Yingke Huang, Xinyu Pan, Yi Zhang, Jiaou Wang, Pavel Dudin, Jose Avila, Zhesheng Chen, Yuhui Dong","doi":"10.1038/s42005-024-01878-1","DOIUrl":null,"url":null,"abstract":"Unsupervised clustering method has shown strong capabilities in automatically categorizing the ARPES (ARPES: angle-resolved photoemission spectroscopy) spatial mapping dataset. However, there is still room for improvement in distinguishing subtle differences caused by different layers and substrates. Here, we propose a method called Multi-Stage Clustering Algorithm (MSCA). Using the K-means clustering results/metrics for real space in different energy-momentum windows as the input of the second round K-means clustering for momentum space, the energy-momentum windows that exhibit subtle inhomogeneity in real space will be highlighted. It recognizes different types of electronic structures both in real space and momentum space in spatially resolved ARPES dataset. This method can be used to capture the areas of interest, and is especially suitable for samples with complex band dispersions, and can be a practical tool to any high dimensional scientific data analysis. A bottleneck for the analysis of data produced by angle-resolved photoemission spectroscopy (ARPES) is the size of the data related to spatial resolution. Building on earlier work, the authors present a data processing method that adopts unsupervised machine learning-based tools to improve the accuracy and efficiency when analysing data produced by nano-ARPES measurements.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01878-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01878-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Unsupervised clustering method has shown strong capabilities in automatically categorizing the ARPES (ARPES: angle-resolved photoemission spectroscopy) spatial mapping dataset. However, there is still room for improvement in distinguishing subtle differences caused by different layers and substrates. Here, we propose a method called Multi-Stage Clustering Algorithm (MSCA). Using the K-means clustering results/metrics for real space in different energy-momentum windows as the input of the second round K-means clustering for momentum space, the energy-momentum windows that exhibit subtle inhomogeneity in real space will be highlighted. It recognizes different types of electronic structures both in real space and momentum space in spatially resolved ARPES dataset. This method can be used to capture the areas of interest, and is especially suitable for samples with complex band dispersions, and can be a practical tool to any high dimensional scientific data analysis. A bottleneck for the analysis of data produced by angle-resolved photoemission spectroscopy (ARPES) is the size of the data related to spatial resolution. Building on earlier work, the authors present a data processing method that adopts unsupervised machine learning-based tools to improve the accuracy and efficiency when analysing data produced by nano-ARPES measurements.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.