Aitor Domínguez-Saldaña, Alfonso J Carrillo, María Balaguer, Laura Navarrete, Joaquín Santos, David Catalán-Martínez, Beatriz García-Baños, Pedro J Plaza-González, José D Gutierrez-Cano, Felipe Peñaranda, José Manuel Catalá-Civera, José Manuel Serra
{"title":"Microwave-Driven Reduction Accelerates Oxygen Exchange in Perovskite Oxides.","authors":"Aitor Domínguez-Saldaña, Alfonso J Carrillo, María Balaguer, Laura Navarrete, Joaquín Santos, David Catalán-Martínez, Beatriz García-Baños, Pedro J Plaza-González, José D Gutierrez-Cano, Felipe Peñaranda, José Manuel Catalá-Civera, José Manuel Serra","doi":"10.1021/acsami.4c15150","DOIUrl":null,"url":null,"abstract":"<p><p>Microwave-assisted oxide reduction has emerged as a promising method to electrify chemical looping processes for renewable hydrogen production. Moreover, these thermochemical cycles can be used for thermochemical air separation, electrifying the O<sub>2</sub> generation by applying microwaves in the reduction step. This approach offers an alternative to conventional cryogenic air separation, producing pure streams of O<sub>2</sub> and N<sub>2</sub>. The electrification by microwaves lowers the requirements for titanate perovskites (CaTi<sub>1-<i>x</i></sub>Mn<sub><i>x</i></sub>O<sub>3-δ</sub>), which typically demand high temperatures for thermochemical cycles. Microwave activation allows for a drastic reduction in the operation conditions of the reduction reaction, leading to unprecedentedly rapid absorption-desorption cycles (<3 min per cycle). For CaTi<sub>0.8</sub>Mn<sub>0.2</sub>O<sub>3-δ</sub>, we achieved a cycle-averaged O<sub>2</sub> production of 2.6 mL g<sup>-1</sup> min<sup>-1</sup> at 800 °C, surpassing conventional values of materials operating in the high-temperature regime. This method could significantly impact thermochemical air separation by enabling a faster oxygen absorption-desorption cycle at more moderate temperatures than those of conventionally heated processes.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"69324-69332"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c15150","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Microwave-assisted oxide reduction has emerged as a promising method to electrify chemical looping processes for renewable hydrogen production. Moreover, these thermochemical cycles can be used for thermochemical air separation, electrifying the O2 generation by applying microwaves in the reduction step. This approach offers an alternative to conventional cryogenic air separation, producing pure streams of O2 and N2. The electrification by microwaves lowers the requirements for titanate perovskites (CaTi1-xMnxO3-δ), which typically demand high temperatures for thermochemical cycles. Microwave activation allows for a drastic reduction in the operation conditions of the reduction reaction, leading to unprecedentedly rapid absorption-desorption cycles (<3 min per cycle). For CaTi0.8Mn0.2O3-δ, we achieved a cycle-averaged O2 production of 2.6 mL g-1 min-1 at 800 °C, surpassing conventional values of materials operating in the high-temperature regime. This method could significantly impact thermochemical air separation by enabling a faster oxygen absorption-desorption cycle at more moderate temperatures than those of conventionally heated processes.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.