Bacillus subtilis DE111 partially reverses endothelial dysfunction in western-diet fed mice.

IF 3 4区 医学 Q2 MICROBIOLOGY Beneficial microbes Pub Date : 2024-12-03 DOI:10.1163/18762891-bja00052
B D Risk, E L Graham, M Zhang, Y Wei, G C Stark, G D Brown, C L Gentile, T L Weir
{"title":"Bacillus subtilis DE111 partially reverses endothelial dysfunction in western-diet fed mice.","authors":"B D Risk, E L Graham, M Zhang, Y Wei, G C Stark, G D Brown, C L Gentile, T L Weir","doi":"10.1163/18762891-bja00052","DOIUrl":null,"url":null,"abstract":"<p><p>Imbalances in the gut microbiome have emerged as an important factor in endothelial dysfunction, a significant risk factor for cardiovascular disease. Thus, interventions targeting the microbiome may prove helpful in preventing or reversing this impairment. We previously reported that spore-forming Bacillus subtilis DE111 improved endothelial function in a cohort of healthy, non-obese humans after a four-week intervention. Building on these promising results, the present study sought to investigate whether administering B. subtilis DE111 could reverse endothelial dysfunction in mice with diet-induced obesity. Male C57BL/6J mice were fed a Western diet (WD; n = 24) or standard diet (SD; n = 24) for ten weeks to induce endothelial dysfunction, after which half of the animals in each group (n = 12) were allocated to receive B. subtilis DE111 (hereafter, PB) formulated into the diet for an additional eight weeks. Outcomes included endothelial-dependent arterial dilation, glucose tolerance, body weight changes, microbiota profiles, and assessments of intestinal permeability and mucosal immunity markers. Furthermore, a cell culture model of gut barrier function was used to assess the effects of PB on gut barrier integrity. PB treatment significantly attenuated WD-induced mesenteric endothelial-dependent arterial dilation, independent of changes in other cardiometabolic parameters or changes in gut barrier function. In vitro trans-epithelial electrical resistance of the Caco-2 cell culture confirmed that neither PB-conditioned media nor faecal waters from B. subtilis-treated human stool resulted in gut barrier improvements, nor did they protect against inflammation-associated barrier disruptions. Unsurprisingly, microbiota analysis revealed significant differences in Shannon's alpha diversity of WD-fed animals compared to SD. These data suggest that PB consumption significantly attenuated WD diet-induced endothelial dysfunction; however, the underlying mechanisms of this protection were not determined. Improvement in endothelial function was independent of PB-mediated changes to body weight or gut barrier function. Further studies should explore B. subtilis-mediated immune responses or metabolite production as mechanisms underlying these endothelial protective effects.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"1-17"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00052","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Imbalances in the gut microbiome have emerged as an important factor in endothelial dysfunction, a significant risk factor for cardiovascular disease. Thus, interventions targeting the microbiome may prove helpful in preventing or reversing this impairment. We previously reported that spore-forming Bacillus subtilis DE111 improved endothelial function in a cohort of healthy, non-obese humans after a four-week intervention. Building on these promising results, the present study sought to investigate whether administering B. subtilis DE111 could reverse endothelial dysfunction in mice with diet-induced obesity. Male C57BL/6J mice were fed a Western diet (WD; n = 24) or standard diet (SD; n = 24) for ten weeks to induce endothelial dysfunction, after which half of the animals in each group (n = 12) were allocated to receive B. subtilis DE111 (hereafter, PB) formulated into the diet for an additional eight weeks. Outcomes included endothelial-dependent arterial dilation, glucose tolerance, body weight changes, microbiota profiles, and assessments of intestinal permeability and mucosal immunity markers. Furthermore, a cell culture model of gut barrier function was used to assess the effects of PB on gut barrier integrity. PB treatment significantly attenuated WD-induced mesenteric endothelial-dependent arterial dilation, independent of changes in other cardiometabolic parameters or changes in gut barrier function. In vitro trans-epithelial electrical resistance of the Caco-2 cell culture confirmed that neither PB-conditioned media nor faecal waters from B. subtilis-treated human stool resulted in gut barrier improvements, nor did they protect against inflammation-associated barrier disruptions. Unsurprisingly, microbiota analysis revealed significant differences in Shannon's alpha diversity of WD-fed animals compared to SD. These data suggest that PB consumption significantly attenuated WD diet-induced endothelial dysfunction; however, the underlying mechanisms of this protection were not determined. Improvement in endothelial function was independent of PB-mediated changes to body weight or gut barrier function. Further studies should explore B. subtilis-mediated immune responses or metabolite production as mechanisms underlying these endothelial protective effects.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Beneficial microbes
Beneficial microbes MICROBIOLOGY-NUTRITION & DIETETICS
CiteScore
7.90
自引率
1.90%
发文量
53
审稿时长
>12 weeks
期刊介绍: Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators. The journal will have five major sections: * Food, nutrition and health * Animal nutrition * Processing and application * Regulatory & safety aspects * Medical & health applications In these sections, topics dealt with by Beneficial Microbes include: * Worldwide safety and regulatory issues * Human and animal nutrition and health effects * Latest discoveries in mechanistic studies and screening methods to unravel mode of action * Host physiology related to allergy, inflammation, obesity, etc. * Trends in application of (meta)genomics, proteomics and metabolomics * New developments in how processing optimizes pro- & prebiotics for application * Bacterial physiology related to health benefits
期刊最新文献
Deciphering the mechanisms of action underlying probiotic properties of Shouchella clausii by a functional genomics approach. Bacillus subtilis DE111 partially reverses endothelial dysfunction in western-diet fed mice. Deciphering the role of probiotics in mental health: a systematic literature review of psychobiotics. Multifactorial effects of probiotic Parasutterella excrementihominis on gestational inflammation, offspring behaviour and prenatal-stress induced disruptions in tryptophan metabolism. Limosilactobacillus reuteri ameliorates maternal separation stress in newborn mice and alters subsequent adult behaviour.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1