Beneficial effects of Lactiplantibacillus plantarum BGPKM22 manifest only in interaction with healthy, but not with diseased human bronchial epithelial cells.

IF 3 4区 医学 Q2 MICROBIOLOGY Beneficial microbes Pub Date : 2025-02-13 DOI:10.1163/18762891-bja00060
H Mitrovic, S Sokovic Bajic, K Veljovic, N Golic, M Stankovic
{"title":"Beneficial effects of Lactiplantibacillus plantarum BGPKM22 manifest only in interaction with healthy, but not with diseased human bronchial epithelial cells.","authors":"H Mitrovic, S Sokovic Bajic, K Veljovic, N Golic, M Stankovic","doi":"10.1163/18762891-bja00060","DOIUrl":null,"url":null,"abstract":"<p><p>It has already been recognised that lung microbiota differs in healthy and diseased lungs. In chronic obstructive pulmonary disease (COPD), a change in the structure, abundance and diversity of lung microbiota correlates with the severity of disease. But how the members of lung microbiota influence healthy and diseased lungs, as well as how they are affected by the lung health status is still largely unknown. In this study, we applied a dual RNA sequencing in order to scrutinise an early interspecies interaction between healthy and diseased human primary bronchial epithelial cells exposed to the beneficial bacteria Lactiplantibacillus plantarum BGPKM22. In healthy and diseased cells interaction with BGPKM22 led to a change in expression of 52 and 45 genes, respectively. The genes IQCN, LINC01554, KCNB1, and CDK7 indicated a specific response of human bronchial epithelial cells exposed to the BGPKM22 strain, regardless of the health status. Markedly more genes showed a change in expression in the BGPKM22 strain in interaction with healthy than with diseased cells, 486 and 101, respectively. Interaction with human bronchial epithelial cells caused a stress to bacteria, but the response of bacteria depended on the health status of the cells. The adhesion of the BGPKM22 strain was better to healthy, than to diseased cells. The fitness of the BGPKM22 strain increased only in interaction with healthy, but not with diseased cells. Remarkably, interaction with healthy, but not with diseased cells, stimulated the synthesis of exopolysaccharide layer of the strain BGPKM22. So, beneficial effects of bacteria can be diminished in interaction with diseased cells. Also, a lowered affinity of bacteria towards diseased environment can explain microbiota dysbiosis in the diseased lungs, such as lungs in patients with COPD.</p>","PeriodicalId":8834,"journal":{"name":"Beneficial microbes","volume":" ","pages":"1-17"},"PeriodicalIF":3.0000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beneficial microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1163/18762891-bja00060","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

It has already been recognised that lung microbiota differs in healthy and diseased lungs. In chronic obstructive pulmonary disease (COPD), a change in the structure, abundance and diversity of lung microbiota correlates with the severity of disease. But how the members of lung microbiota influence healthy and diseased lungs, as well as how they are affected by the lung health status is still largely unknown. In this study, we applied a dual RNA sequencing in order to scrutinise an early interspecies interaction between healthy and diseased human primary bronchial epithelial cells exposed to the beneficial bacteria Lactiplantibacillus plantarum BGPKM22. In healthy and diseased cells interaction with BGPKM22 led to a change in expression of 52 and 45 genes, respectively. The genes IQCN, LINC01554, KCNB1, and CDK7 indicated a specific response of human bronchial epithelial cells exposed to the BGPKM22 strain, regardless of the health status. Markedly more genes showed a change in expression in the BGPKM22 strain in interaction with healthy than with diseased cells, 486 and 101, respectively. Interaction with human bronchial epithelial cells caused a stress to bacteria, but the response of bacteria depended on the health status of the cells. The adhesion of the BGPKM22 strain was better to healthy, than to diseased cells. The fitness of the BGPKM22 strain increased only in interaction with healthy, but not with diseased cells. Remarkably, interaction with healthy, but not with diseased cells, stimulated the synthesis of exopolysaccharide layer of the strain BGPKM22. So, beneficial effects of bacteria can be diminished in interaction with diseased cells. Also, a lowered affinity of bacteria towards diseased environment can explain microbiota dysbiosis in the diseased lungs, such as lungs in patients with COPD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Beneficial microbes
Beneficial microbes MICROBIOLOGY-NUTRITION & DIETETICS
CiteScore
7.90
自引率
1.90%
发文量
53
审稿时长
>12 weeks
期刊介绍: Beneficial Microbes is a peer-reviewed scientific journal with a specific area of focus: the promotion of the science of microbes beneficial to the health and wellbeing of man and animal. The journal contains original research papers and critical reviews in all areas dealing with beneficial microbes in both the small and large intestine, together with opinions, a calendar of forthcoming beneficial microbes-related events and book reviews. The journal takes a multidisciplinary approach and focuses on a broad spectrum of issues, including safety aspects of pro- & prebiotics, regulatory aspects, mechanisms of action, health benefits for the host, optimal production processes, screening methods, (meta)genomics, proteomics and metabolomics, host and bacterial physiology, application, and role in health and disease in man and animal. Beneficial Microbes is intended to serve the needs of researchers and professionals from the scientific community and industry, as well as those of policy makers and regulators. The journal will have five major sections: * Food, nutrition and health * Animal nutrition * Processing and application * Regulatory & safety aspects * Medical & health applications In these sections, topics dealt with by Beneficial Microbes include: * Worldwide safety and regulatory issues * Human and animal nutrition and health effects * Latest discoveries in mechanistic studies and screening methods to unravel mode of action * Host physiology related to allergy, inflammation, obesity, etc. * Trends in application of (meta)genomics, proteomics and metabolomics * New developments in how processing optimizes pro- & prebiotics for application * Bacterial physiology related to health benefits
期刊最新文献
Gut microbiota composition of lean and obese Lebanese individuals. Beneficial effects of Lactiplantibacillus plantarum BGPKM22 manifest only in interaction with healthy, but not with diseased human bronchial epithelial cells. Causal relationship between Faecalibacterium abundance and risk of Faecalibacterium-related diseases: a two-sample bi-directional Mendelian randomisation study. Effect of Bacillus subtilis ATCC 122264 on intestinal gas symptoms and quality of life in adults with functional bloating. The prebiotic landscape: history, health and physiological benefits, and regulatory challenges - an IPA perspective part 1.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1