Structural Gating Enhances Long-Distance Light-Driven Interfacial Electron Transfer.

IF 12.7 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Central Science Pub Date : 2024-11-11 eCollection Date: 2024-11-27 DOI:10.1021/acscentsci.4c01106
Quentin R Loague, Marzieh Heidari, Hayden J Mann, Evgeny O Danilov, Felix N Castellano, Elena Galoppini, Gerald J Meyer
{"title":"Structural Gating Enhances Long-Distance Light-Driven Interfacial Electron Transfer.","authors":"Quentin R Loague, Marzieh Heidari, Hayden J Mann, Evgeny O Danilov, Felix N Castellano, Elena Galoppini, Gerald J Meyer","doi":"10.1021/acscentsci.4c01106","DOIUrl":null,"url":null,"abstract":"<p><p>Structural gating provides a molecular means to transfer electrons preferentially in one desired vectorial direction, a behavior needed for applications in artificial photosynthesis. At the interfaces utilized herein, visible-light absorption by a transition metal complex <i>opens</i> a \"structural gate\" by planarization of otherwise rotating phenyl rings in <i>p-</i>phenylene ethynylene (PE) bridge units. Planarization provides a conjugated pathway for electron flow toward a conductive oxide surface. Interfacial electron transfer to the oxide restores rotation and <i>closes</i> the gate to the unwanted recombination reaction. This structural gating results in nearly quantitative long-distance (>20 Å) interfacial electron transfer that occurs ∼1000 times faster than transfer in the opposite direction. A comparative kinetic study of these complexes with those that contain ionic bridge units, without gating function, as a function of the applied potential and hence -Δ<i>G</i>° provided a physical basis for the structural gating. A small distance-dependent reorganization energy with weak electronic coupling underlies the success of this gate that enables efficient long-distance electron transfer and slow recombination.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 11","pages":"2132-2144"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613339/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscentsci.4c01106","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Structural gating provides a molecular means to transfer electrons preferentially in one desired vectorial direction, a behavior needed for applications in artificial photosynthesis. At the interfaces utilized herein, visible-light absorption by a transition metal complex opens a "structural gate" by planarization of otherwise rotating phenyl rings in p-phenylene ethynylene (PE) bridge units. Planarization provides a conjugated pathway for electron flow toward a conductive oxide surface. Interfacial electron transfer to the oxide restores rotation and closes the gate to the unwanted recombination reaction. This structural gating results in nearly quantitative long-distance (>20 Å) interfacial electron transfer that occurs ∼1000 times faster than transfer in the opposite direction. A comparative kinetic study of these complexes with those that contain ionic bridge units, without gating function, as a function of the applied potential and hence -ΔG° provided a physical basis for the structural gating. A small distance-dependent reorganization energy with weak electronic coupling underlies the success of this gate that enables efficient long-distance electron transfer and slow recombination.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结构门控增强远距离光驱动界面电子转移。
结构门控提供了一种分子手段,在一个期望的矢量方向上优先转移电子,这种行为需要在人工光合作用中的应用。在本文使用的界面上,过渡金属配合物的可见光吸收通过平面化对苯基乙烯(PE)桥单元中旋转的苯环打开了一个“结构门”。平面化为电子流向导电氧化物表面提供了一个共轭途径。向氧化物的界面电子转移恢复了旋转,并关闭了不需要的复合反应的大门。这种结构门控导致近定量的远距离(bbb20 Å)界面电子转移,其发生速度比相反方向的转移快1000倍。这些配合物与那些含有离子桥单元的配合物的比较动力学研究,没有门控功能,作为应用电位的函数,因此-ΔG°为结构门控提供了物理基础。一个小的距离依赖重组能与弱电子耦合的基础上,该门的成功,使有效的远距离电子转移和缓慢的重组。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Central Science
ACS Central Science Chemical Engineering-General Chemical Engineering
CiteScore
25.50
自引率
0.50%
发文量
194
审稿时长
10 weeks
期刊介绍: ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Measuring the Elusive Half-Life of Samarium-146. Measuring the Elusive Half-Life of Samarium-146 Strand-Swapped SH3 Domain Dimer with Superoxide Dismutase Activity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1