Xiaoxuan Lei , Yu Yang , Judun Zheng , Liwen Liang , Liuhanghang Cheng , Yunqing Dong , Biying Qiu , Floris J. Bikker , Tymour Forouzanfar , Biao Cheng , Gang Wu , Bin Yang
{"title":"The cyclization of human salivary Histatin 1 via click chemistry for skin wound healing","authors":"Xiaoxuan Lei , Yu Yang , Judun Zheng , Liwen Liang , Liuhanghang Cheng , Yunqing Dong , Biying Qiu , Floris J. Bikker , Tymour Forouzanfar , Biao Cheng , Gang Wu , Bin Yang","doi":"10.1016/j.ejps.2024.106978","DOIUrl":null,"url":null,"abstract":"<div><div>Acute skin injuries can result in the breakdown of the skin barrier, heightening the risk of infections and complications. Histatin 1 (Hst1) promotes the adhesion, spreading, and migration of various skin-related cells, thus encouraging wound healing. However, Hst1 is extensively degraded upon exposure to wound exudates. Cyclized hst1 (Cyclic-hst1) has a much higher resistance to protease degradation than Hst1, thus increasing its stability and half-life. Herein, we synthesized Cyclic-hst1 via a click reaction and explored its efficacy in wound healing via cellular and animal experiments. Cyclic-hst1, at a 100-fold lower concentration than Hst1, effectively promoted acute skin wound healing. In addition, Cyclic-hst1 had a superior effect to Hst1 in terms of its anti-inflammatory, re-epithelialization, collagen deposition, and angiogenic effects, thus significantly promoting skin wound healing. Consequently, Cyclic-hst1 could represent a favorable treatment to manage acute skin wound healing, providing a promising experimental basis for clinical transformation and application<em>.</em></div></div>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":"204 ","pages":"Article 106978"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928098724002914","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Acute skin injuries can result in the breakdown of the skin barrier, heightening the risk of infections and complications. Histatin 1 (Hst1) promotes the adhesion, spreading, and migration of various skin-related cells, thus encouraging wound healing. However, Hst1 is extensively degraded upon exposure to wound exudates. Cyclized hst1 (Cyclic-hst1) has a much higher resistance to protease degradation than Hst1, thus increasing its stability and half-life. Herein, we synthesized Cyclic-hst1 via a click reaction and explored its efficacy in wound healing via cellular and animal experiments. Cyclic-hst1, at a 100-fold lower concentration than Hst1, effectively promoted acute skin wound healing. In addition, Cyclic-hst1 had a superior effect to Hst1 in terms of its anti-inflammatory, re-epithelialization, collagen deposition, and angiogenic effects, thus significantly promoting skin wound healing. Consequently, Cyclic-hst1 could represent a favorable treatment to manage acute skin wound healing, providing a promising experimental basis for clinical transformation and application.
期刊介绍:
The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development.
More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making.
Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.