Flammulina velutipes protein-Flammulina velutipes soluble polysaccharide-tea polyphenols particles stabilized Pickering emulsions for the delivery of β-carotene.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY International Journal of Biological Macromolecules Pub Date : 2024-12-02 DOI:10.1016/j.ijbiomac.2024.138299
Xiaoyue Han, Xukai Niu, Mengyan Xu, Rui Feng, Qianxi Han, Bo Liu, Yanfen Cheng, Shaojun Yun, Feier Cheng, Cuiping Feng, Jinling Cao
{"title":"Flammulina velutipes protein-Flammulina velutipes soluble polysaccharide-tea polyphenols particles stabilized Pickering emulsions for the delivery of β-carotene.","authors":"Xiaoyue Han, Xukai Niu, Mengyan Xu, Rui Feng, Qianxi Han, Bo Liu, Yanfen Cheng, Shaojun Yun, Feier Cheng, Cuiping Feng, Jinling Cao","doi":"10.1016/j.ijbiomac.2024.138299","DOIUrl":null,"url":null,"abstract":"<p><p>The delivery vehicles based on protein-polysaccharide-polyphenol are promising methods to encapsulate bioactive components with the aim of improving their solubility and bioavailability. In this study, we used Flammulina velutipes protein (FVP) and Flammulina velutipes soluble polysaccharides (FVSP) as raw materials and prepared FVP-FVSP and FVP-FVSP-TP composite particles loaded with tea polyphenols (TP), the high internal phase Pickering emulsions stabilized by FVP-FVSP and FVP-FVSP-TP for the delivery of β-carotene (BC) were created. FVP-FVSP-TP has more promise as Pickering emulsion stabilizer than FVP-FVSP because of the smaller particle size, proper contact angle, and lower surface tension. The optimal preparation conditions of the emulsion were 4 % particle concentration and 80 % oil phase volume fraction. The emulsions stabilized by FVP-FVSP and FVP-FVSP-TP were o/w emulsions. Compared to the emulsion stabilized by FVP-FVSP, the FVP-FVSP-TP stabilized emulsion had higher G', G″ values and viscosity and showed better thermal, centrifugal, storage and oil oxidation stability. Moreover, FVP-FVSP-TP stabilized emulsions could further enhance the retention rate and bioaccessibility of TP and β-carotene. This study provides a theoretical basis for the application of FVP and FVSP in Pickering emulsions, and a reference for the fabrication of delivery vehicles to improve the stability and bioaccessibility of bioactive substances.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"138299"},"PeriodicalIF":7.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.138299","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The delivery vehicles based on protein-polysaccharide-polyphenol are promising methods to encapsulate bioactive components with the aim of improving their solubility and bioavailability. In this study, we used Flammulina velutipes protein (FVP) and Flammulina velutipes soluble polysaccharides (FVSP) as raw materials and prepared FVP-FVSP and FVP-FVSP-TP composite particles loaded with tea polyphenols (TP), the high internal phase Pickering emulsions stabilized by FVP-FVSP and FVP-FVSP-TP for the delivery of β-carotene (BC) were created. FVP-FVSP-TP has more promise as Pickering emulsion stabilizer than FVP-FVSP because of the smaller particle size, proper contact angle, and lower surface tension. The optimal preparation conditions of the emulsion were 4 % particle concentration and 80 % oil phase volume fraction. The emulsions stabilized by FVP-FVSP and FVP-FVSP-TP were o/w emulsions. Compared to the emulsion stabilized by FVP-FVSP, the FVP-FVSP-TP stabilized emulsion had higher G', G″ values and viscosity and showed better thermal, centrifugal, storage and oil oxidation stability. Moreover, FVP-FVSP-TP stabilized emulsions could further enhance the retention rate and bioaccessibility of TP and β-carotene. This study provides a theoretical basis for the application of FVP and FVSP in Pickering emulsions, and a reference for the fabrication of delivery vehicles to improve the stability and bioaccessibility of bioactive substances.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
期刊最新文献
Elucidating the genetic basis of bulb-related traits in garlic (Allium sativum) through genome-wide association study. Highly efficient production of lacto-N-tetraose in plasmid-free Escherichia coli through chromosomal integration of multicopy key glycosyltransferase genes. Influence of in vitro pectin fermentation on the human fecal microbiome and O-glycosylation of HT29-MTX cells. Multi-scale structural influence of starch on their interaction of caffeic acid and starch after freeze-thaw: Taking potato starch and lotus seed starch as examples. Studying the role of thrombomodulin-plasminogen interaction in spatial and interfacial invasion of melanoma metastatic progression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1