Osteocalcin: A bone protein with multiple endocrine functions.

IF 3.2 3区 医学 Q2 MEDICAL LABORATORY TECHNOLOGY Clinica Chimica Acta Pub Date : 2025-02-01 Epub Date: 2024-12-02 DOI:10.1016/j.cca.2024.120067
William Determe, Sabina Chaudhary Hauge, Justine Demeuse, Philippe Massonnet, Elodie Grifnée, Loreen Huyghebaert, Thomas Dubrowski, Matthieu Schoumacher, Stéphanie Peeters, Caroline Le Goff, Pieter Evenepoel, Ditte Hansen, Etienne Cavalier
{"title":"Osteocalcin: A bone protein with multiple endocrine functions.","authors":"William Determe, Sabina Chaudhary Hauge, Justine Demeuse, Philippe Massonnet, Elodie Grifnée, Loreen Huyghebaert, Thomas Dubrowski, Matthieu Schoumacher, Stéphanie Peeters, Caroline Le Goff, Pieter Evenepoel, Ditte Hansen, Etienne Cavalier","doi":"10.1016/j.cca.2024.120067","DOIUrl":null,"url":null,"abstract":"<p><p>Bones are now recognised as endocrine organs with diverse functions. Osteocalcin, a protein primarily produced by osteoblasts, has garnered significant attention. Research into osteocalcin has revealed its impact on glucose metabolism and its unexpected endocrine role, particularly in its undercarboxylated form (ucOC). This form influences organs, affecting insulin sensitivity and even showing correlations with conditions like type 2 diabetes and cardiovascular diseases. However, analytical challenges are impeding advances in clinical research. Various immunoassays like RIA, EIA, ECLIA, IRMA, and ELISA have been developed to analyse osteocalcin. Recent innovations include techniques like OS-ELISA and OS phage Immuno-PCR, enabling fragment analysis. Advancements also encompass porous silicon for detection and ECLIA for rapid measurements. The limitations of immunoassays lead to ucOC measurement discrepancies, prompting the development of mass spectrometry-based techniques. Mass spectrometry increasingly quantifies carboxylated, undercarboxylated, and fragmented forms of osteocalcin. Mass spectrometry improves routine and clinical analysis accuracy. With heightened specificity, it identifies carboxylation status and serum fragmentations, boosting measurement reliability as a reference method. This approach augments analytical precision, advancing disease understanding, enabling personalised medicine, and ultimately benefiting clinical outcomes. In this review, the different techniques for the analysis of osteocalcin will be explored and compared, and their clinical implications will be discussed.</p>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":" ","pages":"120067"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cca.2024.120067","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bones are now recognised as endocrine organs with diverse functions. Osteocalcin, a protein primarily produced by osteoblasts, has garnered significant attention. Research into osteocalcin has revealed its impact on glucose metabolism and its unexpected endocrine role, particularly in its undercarboxylated form (ucOC). This form influences organs, affecting insulin sensitivity and even showing correlations with conditions like type 2 diabetes and cardiovascular diseases. However, analytical challenges are impeding advances in clinical research. Various immunoassays like RIA, EIA, ECLIA, IRMA, and ELISA have been developed to analyse osteocalcin. Recent innovations include techniques like OS-ELISA and OS phage Immuno-PCR, enabling fragment analysis. Advancements also encompass porous silicon for detection and ECLIA for rapid measurements. The limitations of immunoassays lead to ucOC measurement discrepancies, prompting the development of mass spectrometry-based techniques. Mass spectrometry increasingly quantifies carboxylated, undercarboxylated, and fragmented forms of osteocalcin. Mass spectrometry improves routine and clinical analysis accuracy. With heightened specificity, it identifies carboxylation status and serum fragmentations, boosting measurement reliability as a reference method. This approach augments analytical precision, advancing disease understanding, enabling personalised medicine, and ultimately benefiting clinical outcomes. In this review, the different techniques for the analysis of osteocalcin will be explored and compared, and their clinical implications will be discussed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
骨钙素:一种具有多种内分泌功能的骨蛋白。
骨骼现在被认为是具有多种功能的内分泌器官。骨钙素是一种主要由成骨细胞产生的蛋白质,引起了人们的广泛关注。对骨钙素的研究揭示了其对葡萄糖代谢的影响及其意想不到的内分泌作用,特别是其低羧化形式(ucOC)。这种形式会影响器官,影响胰岛素敏感性,甚至与2型糖尿病和心血管疾病等疾病有关。然而,分析方面的挑战阻碍了临床研究的进展。各种免疫分析方法,如RIA, EIA, ECLIA, IRMA和ELISA,已经开发用于分析骨钙素。最近的创新包括OS- elisa和OS噬菌体免疫pcr等技术,使片段分析成为可能。进步还包括用于检测的多孔硅和用于快速测量的ECLIA。免疫测定的局限性导致ucOC测量差异,促使基于质谱的技术的发展。质谱法越来越多地量化羧化、欠羧化和骨钙素碎片化形式。质谱法提高了常规和临床分析的准确性。它具有更高的特异性,可以识别羧基化状态和血清片段,提高了作为参考方法的测量可靠性。这种方法提高了分析精度,促进了对疾病的理解,实现了个性化医疗,并最终有利于临床结果。在这篇综述中,我们将探讨和比较不同的骨钙素分析技术,并讨论它们的临床意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Clinica Chimica Acta
Clinica Chimica Acta 医学-医学实验技术
CiteScore
10.10
自引率
2.00%
发文量
1268
审稿时长
23 days
期刊介绍: The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells. The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.
期刊最新文献
Clinicopathological characteristics of patients with low titer anti-phospholipase A2 receptor antibodies verified by indirect immunofluorescence assay. MiR-363: A potential biomarker of kidney diseases. Osteocalcin: A bone protein with multiple endocrine functions. Crispr-cas biosensing for rapid detection of viral infection. Biosensors for early stroke detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1