Weixin Xu , Miaomiao Tao , Yeqiong Liu , Jun Yan , Jiali Hu , Lei Wang
{"title":"METTL3-mediated SMPDL3A promotes cell growth, metastasis and immune process of hepatocellular carcinoma by regulating LRPPRC","authors":"Weixin Xu , Miaomiao Tao , Yeqiong Liu , Jun Yan , Jiali Hu , Lei Wang","doi":"10.1016/j.cellsig.2024.111543","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Methyltransferase-like protein 3 (METTL3) has been confirmed to act as a tumor promoter to regulate hepatocellular carcinoma (HCC) progression. Therefore, more roles and mechanisms of METTL3 in HCC progression deserve to be further revealed.</div></div><div><h3>Methods</h3><div>The mRNA and protein levels of METTL3, sphingomyelin phodiesterase acid-like 3 A (SMPDL3A), and leucine rich pentatricopeptide repeat containing (LRPPRC) were determined by qRT-PCR and western blot. Cell proliferation, apoptosis, invasion and migration were detected by CCK8 assay, EdU assay, flow cytometry, transwell assay and wound healing assay. HCC cells were co-cultured with phytohemagglutinin-stimulated peripheral blood mononuclear cells, cytokine-induced killer cells, or CD8 + T-cells. IFN-γ, TNF-α levels, HCC cell survival rate and CD8 + T-cell apoptosis were determined to assess cell immune process. The interaction between METTL3, SMPDL3A and LRPPRC was assessed by MeRIP assay, RIP assay, dual-luciferase reporter assay or Co-IP assay. Animal experiments were performed to evaluate the effect of METTL3 knockdown on HCC tumorigenesis and lung metastasis.</div></div><div><h3>Results</h3><div>METTL3 was upregulated in HCC tissues and cells, and its knockdown repressed HCC cell proliferation, invasion, migration, immune process and promoted apoptosis. METTL3 increased SMPDL3A mRNA stability by m6A methylation modification, and this modification could be recognized by IGF2BP1. SMPDL3A overexpression reversed the inhibitory effect of METTL3 knockdown on HCC cell growth, metastasis and immune process. SMPDL3A interacted with LRPPRC to positively regulate its expression, and LRPPRC overexpression also eliminated the regulation of SMPDL3A silencing on HCC progression. In addition, downregulation of METTL3 repressed HCC tumorigenesis and lung metastasis <em>via</em> mediating SMPDL3A/LRPPRC axis.</div></div><div><h3>Conclusion</h3><div>METTL3 accelerated HCC cell growth, metastasis and immune process by regulating SMPDL3A/LRPPRC axis, providing a potential target for HCC treatment.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"127 ","pages":"Article 111543"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656824005187","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Methyltransferase-like protein 3 (METTL3) has been confirmed to act as a tumor promoter to regulate hepatocellular carcinoma (HCC) progression. Therefore, more roles and mechanisms of METTL3 in HCC progression deserve to be further revealed.
Methods
The mRNA and protein levels of METTL3, sphingomyelin phodiesterase acid-like 3 A (SMPDL3A), and leucine rich pentatricopeptide repeat containing (LRPPRC) were determined by qRT-PCR and western blot. Cell proliferation, apoptosis, invasion and migration were detected by CCK8 assay, EdU assay, flow cytometry, transwell assay and wound healing assay. HCC cells were co-cultured with phytohemagglutinin-stimulated peripheral blood mononuclear cells, cytokine-induced killer cells, or CD8 + T-cells. IFN-γ, TNF-α levels, HCC cell survival rate and CD8 + T-cell apoptosis were determined to assess cell immune process. The interaction between METTL3, SMPDL3A and LRPPRC was assessed by MeRIP assay, RIP assay, dual-luciferase reporter assay or Co-IP assay. Animal experiments were performed to evaluate the effect of METTL3 knockdown on HCC tumorigenesis and lung metastasis.
Results
METTL3 was upregulated in HCC tissues and cells, and its knockdown repressed HCC cell proliferation, invasion, migration, immune process and promoted apoptosis. METTL3 increased SMPDL3A mRNA stability by m6A methylation modification, and this modification could be recognized by IGF2BP1. SMPDL3A overexpression reversed the inhibitory effect of METTL3 knockdown on HCC cell growth, metastasis and immune process. SMPDL3A interacted with LRPPRC to positively regulate its expression, and LRPPRC overexpression also eliminated the regulation of SMPDL3A silencing on HCC progression. In addition, downregulation of METTL3 repressed HCC tumorigenesis and lung metastasis via mediating SMPDL3A/LRPPRC axis.
Conclusion
METTL3 accelerated HCC cell growth, metastasis and immune process by regulating SMPDL3A/LRPPRC axis, providing a potential target for HCC treatment.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.