CircHOMER1 promotes silica-induced pulmonary fibrosis by binding to HuR and stabilizing NOX4 mRNA.

IF 4.4 2区 生物学 Q2 CELL BIOLOGY Cellular signalling Pub Date : 2025-02-03 DOI:10.1016/j.cellsig.2025.111638
Qiuyun Wu, Qianyi Zhang, Chunmeng Jin, Xue Liu, Hongmin Yu
{"title":"CircHOMER1 promotes silica-induced pulmonary fibrosis by binding to HuR and stabilizing NOX4 mRNA.","authors":"Qiuyun Wu, Qianyi Zhang, Chunmeng Jin, Xue Liu, Hongmin Yu","doi":"10.1016/j.cellsig.2025.111638","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Silicosis, one of the serious occupational diseases, is mainly manifested by pulmonary fibrosis induced by long-term exposure to silica particles in workplace. Evidence demonstrates that circular RNAs (circRNAs) are interesting regulators of pulmonary fibrosis process. So, further elucidation of the role of circRNAs may provide a new perspective into mechanisms driving pulmonary fibrosis and silicosis.</p><p><strong>Methods: </strong>The characteristics of circRNA homer scaffold protein 1 (hsa_circ_0006916, circHOMER1) was assessed using Actinomycin D, RNase R, and nucleoplasmic separation assay. The histopathological examination and Enzyme-linked immunosorbent assay (ELISA) were used to confirm circHOMER1 function in mouse lung tissues under silica particle exposure. The expression of circHOMER1, human antigen R (HuR) and NADPH oxidase 4 (NOX4) was identified by western blot or RT-qPCR assay. The RNA immunoprecipitation (RIP) assay and plasmid co-transfection were used to analyze the interaction between circHOMER1, HuR and NOX4.</p><p><strong>Results: </strong>We confirmed an upregulated circHOMER1 in silicosis fibrosis. Functional assays showed that the knockdown of circHOMER1 suppressed the viability of fibroblasts and the production of fibrotic molecules and alleviated the histology fibrotic changes in lung tissues from mouse exposed to silica particles. Mechanistically, we found that circHOMER1 directly bound to HuR and promoted its protein expression in fibroblasts. And, circHOMER1 further regulated HuR/NOX4 signaling axis through HuR to stabilize NOX4 mRNA, which enhanced the production of reactive oxygen species (ROS), thereby promoting the silicosis fibrosis process.</p><p><strong>Conclusion: </strong>This study revealed the role of circHOMER1 in silica-induced pulmonary fibrosis, suggesting that the inhibition of circHOMER1 may be a potential therapeutic approach to relieve the pathological process of silicosis.</p>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":" ","pages":"111638"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cellsig.2025.111638","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Silicosis, one of the serious occupational diseases, is mainly manifested by pulmonary fibrosis induced by long-term exposure to silica particles in workplace. Evidence demonstrates that circular RNAs (circRNAs) are interesting regulators of pulmonary fibrosis process. So, further elucidation of the role of circRNAs may provide a new perspective into mechanisms driving pulmonary fibrosis and silicosis.

Methods: The characteristics of circRNA homer scaffold protein 1 (hsa_circ_0006916, circHOMER1) was assessed using Actinomycin D, RNase R, and nucleoplasmic separation assay. The histopathological examination and Enzyme-linked immunosorbent assay (ELISA) were used to confirm circHOMER1 function in mouse lung tissues under silica particle exposure. The expression of circHOMER1, human antigen R (HuR) and NADPH oxidase 4 (NOX4) was identified by western blot or RT-qPCR assay. The RNA immunoprecipitation (RIP) assay and plasmid co-transfection were used to analyze the interaction between circHOMER1, HuR and NOX4.

Results: We confirmed an upregulated circHOMER1 in silicosis fibrosis. Functional assays showed that the knockdown of circHOMER1 suppressed the viability of fibroblasts and the production of fibrotic molecules and alleviated the histology fibrotic changes in lung tissues from mouse exposed to silica particles. Mechanistically, we found that circHOMER1 directly bound to HuR and promoted its protein expression in fibroblasts. And, circHOMER1 further regulated HuR/NOX4 signaling axis through HuR to stabilize NOX4 mRNA, which enhanced the production of reactive oxygen species (ROS), thereby promoting the silicosis fibrosis process.

Conclusion: This study revealed the role of circHOMER1 in silica-induced pulmonary fibrosis, suggesting that the inhibition of circHOMER1 may be a potential therapeutic approach to relieve the pathological process of silicosis.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cellular signalling
Cellular signalling 生物-细胞生物学
CiteScore
8.40
自引率
0.00%
发文量
250
审稿时长
27 days
期刊介绍: Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo. Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.
期刊最新文献
Editorial Board CircHOMER1 promotes silica-induced pulmonary fibrosis by binding to HuR and stabilizing NOX4 mRNA. Curcumin chemo-sensitizes intrinsic apoptosis through ROS-mediated mitochondrial hyperpolarization and DNA damage in breast cancer cells. Editorial Board Game-changing breakthroughs to redefine the landscape of the renin–angiotensin–aldosterone system in health and disease
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1