From High Dimensions to Human Insight: Exploring Dimensionality Reduction for Chemical Space Visualization.

IF 3.1 4区 医学 Q3 CHEMISTRY, MEDICINAL Molecular Informatics Pub Date : 2025-01-01 Epub Date: 2024-12-05 DOI:10.1002/minf.202400265
Alexey A Orlov, Tagir N Akhmetshin, Dragos Horvath, Gilles Marcou, Alexandre Varnek
{"title":"From High Dimensions to Human Insight: Exploring Dimensionality Reduction for Chemical Space Visualization.","authors":"Alexey A Orlov, Tagir N Akhmetshin, Dragos Horvath, Gilles Marcou, Alexandre Varnek","doi":"10.1002/minf.202400265","DOIUrl":null,"url":null,"abstract":"<p><p>Dimensionality reduction is an important exploratory data analysis method that allows high-dimensional data to be represented in a human-interpretable lower-dimensional space. It is extensively applied in the analysis of chemical libraries, where chemical structure data - represented as high-dimensional feature vectors-are transformed into 2D or 3D chemical space maps. In this paper, commonly used dimensionality reduction techniques - Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold Approximation and Projection (UMAP), and Generative Topographic Mapping (GTM) - are evaluated in terms of neighborhood preservation and visualization capability of sets of small molecules from the ChEMBL database.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202400265"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733715/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400265","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Dimensionality reduction is an important exploratory data analysis method that allows high-dimensional data to be represented in a human-interpretable lower-dimensional space. It is extensively applied in the analysis of chemical libraries, where chemical structure data - represented as high-dimensional feature vectors-are transformed into 2D or 3D chemical space maps. In this paper, commonly used dimensionality reduction techniques - Principal Component Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), Uniform Manifold Approximation and Projection (UMAP), and Generative Topographic Mapping (GTM) - are evaluated in terms of neighborhood preservation and visualization capability of sets of small molecules from the ChEMBL database.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从高维到人类洞察:探索化学空间可视化的降维。
降维是一种重要的探索性数据分析方法,它允许高维数据在人类可解释的低维空间中表示。它广泛应用于化学文库的分析,其中化学结构数据-表示为高维特征向量-转换为二维或三维化学空间图。在本文中,常用的降维技术-主成分分析(PCA), t-分布随机邻居嵌入(t-SNE),均匀流形逼近和投影(UMAP)和生成地形映射(GTM) -在ChEMBL数据库中小分子集的邻域保存和可视化能力方面进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
期刊最新文献
Transformer Learning in Sequence-Based Drug Design Depends on Compound Memorization and Similarity of Sequence-Compound Pairs. Update and ADMET Profile of the Latin American Natural Product Database: LANaPDB. Structure-Activity Relationships and Design of Focused Libraries Tailored for Staphylococcus Aureus Inhibition. Exploration of (Ultra)Big Chemical Spaces. Ligand B-Factor Index: A Metric for Prioritizing Protein-Ligand Complexes in Docking.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1