Structural Insight on the Selectivity of Calyx[4]Arene-Based Inhibitors of Mg2+-Dependent Atp-Hydrolases.

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Molecular Informatics Pub Date : 2024-12-05 DOI:10.1002/minf.202400200
Alexey Rayevsky, Maksym Platonov, Bulgakov Elijah, Dmytro Volochnyuk, Tetyana Veklich, Sergiy Cherenok, Roman Rodik, Vitaliy Kalchenko, Sergiy Kosterin
{"title":"Structural Insight on the Selectivity of Calyx[4]Arene-Based Inhibitors of Mg<sup>2+-</sup>Dependent Atp-Hydrolases.","authors":"Alexey Rayevsky, Maksym Platonov, Bulgakov Elijah, Dmytro Volochnyuk, Tetyana Veklich, Sergiy Cherenok, Roman Rodik, Vitaliy Kalchenko, Sergiy Kosterin","doi":"10.1002/minf.202400200","DOIUrl":null,"url":null,"abstract":"<p><p>Located in plasma membranes, ATP hydrolases are involved in several dynamic transport processes, helping to control the movement of ions across cell membranes. ATP hydrolase acts as a transport protein, converting energy from ATP hydrolysis into transport molecules against their concentration gradients. In addition to energy metabolism and active transport, ATP hydrolase is essential for maintaining cellular homeostasis and cell function. This study focused on the domain architecture model of P-type ATPases, which participate in the reaction cycles of ATP hydrolysis carried out by membrane transport systems - Na+, K+-ATPase and Ca2+, Mg2+-ATPase. Targeted modulation of Na+, K+-ATPase and Ca2+, Mg2+-ATPase by unnatural drugs is of greatest interest due to the lack of known effectors. This new discovery presents a convenient model based on our recent experimental studies of the membrane structures and myocytes of the uterine smooth muscle, the myometrium. This current study strongly supports the fact that nanosized calix[4]arenes functionalised on the upper rings of the macrocycle with biologically active phosphonic acid fragments can serve as selective and potent inhibitors of cation-transporting electroenzymes. This is how we discovered that calix[4]arene of methylenebisphosphonic acid C-97 and calix[4]arene of bis-aminophosphonic acid C-107 selectively and effectively (I0.5 <100 nM) inhibit the activity of Mg2+, ATP-dependent electrogenic Na+ K+ plasma membrane pump. As drug discovery in the field of Mg2+-ATPase inhibitors is uncharted territory, basic research holds the key to explaining and predicting the mechanism of interaction and action of different classes of compounds. In light of the presented results, new calix[4]arene compounds can be used as potent inhibitors of Mg2+, ATP-dependent electrogenic ion pumps.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202400200"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400200","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Located in plasma membranes, ATP hydrolases are involved in several dynamic transport processes, helping to control the movement of ions across cell membranes. ATP hydrolase acts as a transport protein, converting energy from ATP hydrolysis into transport molecules against their concentration gradients. In addition to energy metabolism and active transport, ATP hydrolase is essential for maintaining cellular homeostasis and cell function. This study focused on the domain architecture model of P-type ATPases, which participate in the reaction cycles of ATP hydrolysis carried out by membrane transport systems - Na+, K+-ATPase and Ca2+, Mg2+-ATPase. Targeted modulation of Na+, K+-ATPase and Ca2+, Mg2+-ATPase by unnatural drugs is of greatest interest due to the lack of known effectors. This new discovery presents a convenient model based on our recent experimental studies of the membrane structures and myocytes of the uterine smooth muscle, the myometrium. This current study strongly supports the fact that nanosized calix[4]arenes functionalised on the upper rings of the macrocycle with biologically active phosphonic acid fragments can serve as selective and potent inhibitors of cation-transporting electroenzymes. This is how we discovered that calix[4]arene of methylenebisphosphonic acid C-97 and calix[4]arene of bis-aminophosphonic acid C-107 selectively and effectively (I0.5 <100 nM) inhibit the activity of Mg2+, ATP-dependent electrogenic Na+ K+ plasma membrane pump. As drug discovery in the field of Mg2+-ATPase inhibitors is uncharted territory, basic research holds the key to explaining and predicting the mechanism of interaction and action of different classes of compounds. In light of the presented results, new calix[4]arene compounds can be used as potent inhibitors of Mg2+, ATP-dependent electrogenic ion pumps.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
期刊最新文献
From High Dimensions to Human Insight: Exploring Dimensionality Reduction for Chemical Space Visualization. Structural Insight on the Selectivity of Calyx[4]Arene-Based Inhibitors of Mg2+-Dependent Atp-Hydrolases. Ultra-Large Virtual Screening: Definition, Recent Advances, and Challenges in Drug Design. Interpret Gaussian Process Models by Using Integrated Gradients. The Chemical Space Spanned by Manually Curated Datasets of Natural and Synthetic Compounds with Activities against SARS-CoV-2.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1