Ultra-Large Virtual Screening: Definition, Recent Advances, and Challenges in Drug Design.

IF 2.8 4区 医学 Q3 CHEMISTRY, MEDICINAL Molecular Informatics Pub Date : 2025-01-01 Epub Date: 2024-12-05 DOI:10.1002/minf.202400305
Gabriel Corrêa Veríssimo, Rafaela Salgado Ferreira, Vinícius Gonçalves Maltarollo
{"title":"Ultra-Large Virtual Screening: Definition, Recent Advances, and Challenges in Drug Design.","authors":"Gabriel Corrêa Veríssimo, Rafaela Salgado Ferreira, Vinícius Gonçalves Maltarollo","doi":"10.1002/minf.202400305","DOIUrl":null,"url":null,"abstract":"<p><p>Virtual screening (VS) in drug design employs computational methodologies to systematically rank molecules from a virtual compound library based on predicted features related to their biological activities or chemical properties. The recent expansion in commercially accessible compound libraries and the advancements in artificial intelligence (AI) and computational power - including enhanced central processing units (CPUs), graphics processing units (GPUs), high-performance computing (HPC), and cloud computing - have significantly expanded our capacity to screen libraries containing over 10<sup>9</sup> molecules. Herein, we review the concept of ultra-large virtual screening (ULVS), focusing on the various algorithms and methodologies employed for virtual screening at this scale. In this context, we present the software utilized, applications, and results of different approaches, such as brute force docking, reaction-based docking approaches, machine learning (ML) strategies applied to docking or other VS methods, and similarity/pharmacophore search-based techniques. These examples represent a paradigm shift in the drug discovery process, demonstrating not only the feasibility of billion-scale compound screening but also their potential to identify hit candidates and increase the structural diversity of novel compounds with biological activities.</p>","PeriodicalId":18853,"journal":{"name":"Molecular Informatics","volume":" ","pages":"e202400305"},"PeriodicalIF":2.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Informatics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/minf.202400305","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Virtual screening (VS) in drug design employs computational methodologies to systematically rank molecules from a virtual compound library based on predicted features related to their biological activities or chemical properties. The recent expansion in commercially accessible compound libraries and the advancements in artificial intelligence (AI) and computational power - including enhanced central processing units (CPUs), graphics processing units (GPUs), high-performance computing (HPC), and cloud computing - have significantly expanded our capacity to screen libraries containing over 109 molecules. Herein, we review the concept of ultra-large virtual screening (ULVS), focusing on the various algorithms and methodologies employed for virtual screening at this scale. In this context, we present the software utilized, applications, and results of different approaches, such as brute force docking, reaction-based docking approaches, machine learning (ML) strategies applied to docking or other VS methods, and similarity/pharmacophore search-based techniques. These examples represent a paradigm shift in the drug discovery process, demonstrating not only the feasibility of billion-scale compound screening but also their potential to identify hit candidates and increase the structural diversity of novel compounds with biological activities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
超大虚拟筛选:药物设计的定义、最新进展和挑战。
药物设计中的虚拟筛选(VS)采用计算方法,根据与生物活性或化学性质相关的预测特征,从虚拟化合物库中系统地对分子进行排序。最近商业上可访问的化合物库的扩展以及人工智能(AI)和计算能力的进步-包括增强的中央处理单元(cpu),图形处理单元(gpu),高性能计算(HPC)和云计算-大大扩展了我们筛选包含超过109个分子的库的能力。在此,我们回顾了超大型虚拟筛选(ULVS)的概念,重点介绍了用于这种规模的虚拟筛选的各种算法和方法。在此背景下,我们介绍了所使用的软件,应用程序和不同方法的结果,例如蛮力对接,基于反应的对接方法,应用于对接或其他VS方法的机器学习(ML)策略,以及基于相似性/药效团搜索的技术。这些例子代表了药物发现过程中的范式转变,不仅证明了数十亿级化合物筛选的可行性,而且还证明了它们在确定候选候选药物和增加具有生物活性的新化合物结构多样性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Informatics
Molecular Informatics CHEMISTRY, MEDICINAL-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
7.30
自引率
2.80%
发文量
70
审稿时长
3 months
期刊介绍: Molecular Informatics is a peer-reviewed, international forum for publication of high-quality, interdisciplinary research on all molecular aspects of bio/cheminformatics and computer-assisted molecular design. Molecular Informatics succeeded QSAR & Combinatorial Science in 2010. Molecular Informatics presents methodological innovations that will lead to a deeper understanding of ligand-receptor interactions, macromolecular complexes, molecular networks, design concepts and processes that demonstrate how ideas and design concepts lead to molecules with a desired structure or function, preferably including experimental validation. The journal''s scope includes but is not limited to the fields of drug discovery and chemical biology, protein and nucleic acid engineering and design, the design of nanomolecular structures, strategies for modeling of macromolecular assemblies, molecular networks and systems, pharmaco- and chemogenomics, computer-assisted screening strategies, as well as novel technologies for the de novo design of biologically active molecules. As a unique feature Molecular Informatics publishes so-called "Methods Corner" review-type articles which feature important technological concepts and advances within the scope of the journal.
期刊最新文献
Exploration of the Global Minimum and Conical Intersection with Bayesian Optimization. Predicting the Price of Molecules Using Their Predicted Synthetic Pathways. KNIME Workflows for Chemoinformatic Characterization of Chemical Databases. Active learning approaches in molecule pKi prediction. Chemography-guided analysis of a reaction path network for ethylene hydrogenation with a model Wilkinson's catalyst.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1