The CCL5/CCR5/SHP2 axis sustains Stat1 phosphorylation and activates NF-κB signaling promoting M1 macrophage polarization and exacerbating chronic prostatic inflammation.

IF 8.2 2区 生物学 Q1 CELL BIOLOGY Cell Communication and Signaling Pub Date : 2024-12-05 DOI:10.1186/s12964-024-01943-w
Chen Jin, Fei Zhang, Hailang Luo, Boyang Li, Xue Jiang, Christopher J Pirozzi, Chaozhao Liang, Meng Zhang
{"title":"The CCL5/CCR5/SHP2 axis sustains Stat1 phosphorylation and activates NF-κB signaling promoting M1 macrophage polarization and exacerbating chronic prostatic inflammation.","authors":"Chen Jin, Fei Zhang, Hailang Luo, Boyang Li, Xue Jiang, Christopher J Pirozzi, Chaozhao Liang, Meng Zhang","doi":"10.1186/s12964-024-01943-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Chronic prostatitis (CP) is a condition markered by persistent prostate inflammation, yet the specific cytokines driving its progression remain largely undefined. This study aims to identify key cytokines involved in CP and investigate their role in driving inflammatory responses through mechanistic and therapeutic exploration.</p><p><strong>Methods: </strong>A 48-cytokine panel test was conducted to compare the plasma cytokine profiles between participants with CP-like symptoms (CP-LS) and healthy controls. Experimental autoimmune prostatitis (EAP) models were used for functional validation, with further mechanistic studies performed through in vivo and in vitro assays. Pharmacological inhibition was applied using maraviroc, and pathway inhibitors to assess therapeutic potential.</p><p><strong>Results: </strong>Our analysis identified CCL5 as one of the most prominently elevated cytokines in CP-LS patients. Further validation in the EAP model mice confirmed elevated CCL5 levels, highlighting its role in driving prostatic inflammation. Mechanistic studies revealed that CCL5 interacts with the CCR5 receptor, promoting M1 macrophage polarization and activating key inflammatory signaling pathways, including Stat1 and NF-κB, as indicated by increased phosphorylation of Stat1 and p65. In vitro, CCL5 combined with LPS stimulation amplified these effects, further promoting M1 polarization. CCL5 also sustained Stat1 activation by inhibiting its dephosphorylation through reduced interaction with SHP2, leading to prolonged inflammatory signaling. Single-cell transcriptomics confirmed high CCR5 expression in macrophages, correlating with inflammatory pathways. Pharmacological inhibition of CCR5, or its downstream signaling, significantly reduced macrophage-driven inflammation both in vivo and in vitro.</p><p><strong>Conclusion: </strong>These findings establish the CCL5/CCR5 axis as a critical driver of persistant prostatic inflammation and present it as a potential therapeutic target for CP.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"584"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619290/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-024-01943-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective: Chronic prostatitis (CP) is a condition markered by persistent prostate inflammation, yet the specific cytokines driving its progression remain largely undefined. This study aims to identify key cytokines involved in CP and investigate their role in driving inflammatory responses through mechanistic and therapeutic exploration.

Methods: A 48-cytokine panel test was conducted to compare the plasma cytokine profiles between participants with CP-like symptoms (CP-LS) and healthy controls. Experimental autoimmune prostatitis (EAP) models were used for functional validation, with further mechanistic studies performed through in vivo and in vitro assays. Pharmacological inhibition was applied using maraviroc, and pathway inhibitors to assess therapeutic potential.

Results: Our analysis identified CCL5 as one of the most prominently elevated cytokines in CP-LS patients. Further validation in the EAP model mice confirmed elevated CCL5 levels, highlighting its role in driving prostatic inflammation. Mechanistic studies revealed that CCL5 interacts with the CCR5 receptor, promoting M1 macrophage polarization and activating key inflammatory signaling pathways, including Stat1 and NF-κB, as indicated by increased phosphorylation of Stat1 and p65. In vitro, CCL5 combined with LPS stimulation amplified these effects, further promoting M1 polarization. CCL5 also sustained Stat1 activation by inhibiting its dephosphorylation through reduced interaction with SHP2, leading to prolonged inflammatory signaling. Single-cell transcriptomics confirmed high CCR5 expression in macrophages, correlating with inflammatory pathways. Pharmacological inhibition of CCR5, or its downstream signaling, significantly reduced macrophage-driven inflammation both in vivo and in vitro.

Conclusion: These findings establish the CCL5/CCR5 axis as a critical driver of persistant prostatic inflammation and present it as a potential therapeutic target for CP.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
索莱宝
DAB
来源期刊
CiteScore
11.00
自引率
0.00%
发文量
180
期刊介绍: Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior. Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.
期刊最新文献
Signal integrator function of CXXC5 in Cancer. The SIRT5-JIP4 interaction promotes osteoclastogenesis by modulating RANKL-induced signaling transduction. Integrative analysis of Ewing's sarcoma reveals that the MIF-CD74 axis is a target for immunotherapy. Klebsiella pneumoniae-derived extracellular vesicles impair endothelial function by inhibiting SIRT1. Targeting the ERK1/2 and p38 MAPK pathways attenuates Golgi tethering factor golgin-97 depletion-induced cancer progression in breast cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1