The future of quantum technologies: superfluorescence from solution-processed, tunable materials.

Nanophotonics (Berlin, Germany) Pub Date : 2024-02-28 eCollection Date: 2024-05-01 DOI:10.1515/nanoph-2023-0919
Brendan Russ, Carissa N Eisler
{"title":"The future of quantum technologies: superfluorescence from solution-processed, tunable materials.","authors":"Brendan Russ, Carissa N Eisler","doi":"10.1515/nanoph-2023-0919","DOIUrl":null,"url":null,"abstract":"<p><p>One of the most significant and surprising recent developments in nanocrystal studies was the observation of superfluorescence from a system of self-assembled, colloidal perovskite nanocrystals [G. Rainò, M. A. Becker, M. I. Bodnarchuk, R. F. Mahrt, M. V. Kovalenko, and T. Stöferle, \"Superfluorescence from lead halide perovskite quantum dot superlattices,\" <i>Nature</i>, vol. 563, no. 7733, pp. 671-675, 2018]. Superfluorescence is a quantum-light property in which many dipoles spontaneously synchronize in phase to create a collective, synergistic photon emission with a much faster lifetime. Thus, it is surprising to observe this in more inhomogenous systems as solution-processed and colloidal structures typically suffer from high optical decoherence and non-homogeneous size distributions. Here we outline recent developments in the demonstration of superfluorescence in colloidal and solution-processed systems and explore the chemical and materials science opportunities allowed by such systems. The ability to create bright and tunable superfluorescent sources could enable transformative developments in quantum information applications and advance our understanding of quantum phenomena.</p>","PeriodicalId":520321,"journal":{"name":"Nanophotonics (Berlin, Germany)","volume":"13 11","pages":"1943-1951"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11501137/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics (Berlin, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/nanoph-2023-0919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most significant and surprising recent developments in nanocrystal studies was the observation of superfluorescence from a system of self-assembled, colloidal perovskite nanocrystals [G. Rainò, M. A. Becker, M. I. Bodnarchuk, R. F. Mahrt, M. V. Kovalenko, and T. Stöferle, "Superfluorescence from lead halide perovskite quantum dot superlattices," Nature, vol. 563, no. 7733, pp. 671-675, 2018]. Superfluorescence is a quantum-light property in which many dipoles spontaneously synchronize in phase to create a collective, synergistic photon emission with a much faster lifetime. Thus, it is surprising to observe this in more inhomogenous systems as solution-processed and colloidal structures typically suffer from high optical decoherence and non-homogeneous size distributions. Here we outline recent developments in the demonstration of superfluorescence in colloidal and solution-processed systems and explore the chemical and materials science opportunities allowed by such systems. The ability to create bright and tunable superfluorescent sources could enable transformative developments in quantum information applications and advance our understanding of quantum phenomena.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
量子技术的未来:溶液处理、可调材料的超荧光。
纳米晶体研究中最重要和最令人惊讶的最新进展之一是观察到自组装的胶体钙钛矿纳米晶体系统的超荧光[G]。Rainò, M. A. Becker, M. I. Bodnarchuk, R. F. Mahrt, M. V. Kovalenko,和T. Stöferle,“卤化铅钙钛矿量子点超点阵的超荧光”,《自然》,第563卷,第5期。[j].中国科学院学报,2018。超荧光是一种量子光特性,其中许多偶极子自发同步,以创造一个集体的、协同的光子发射,具有更快的寿命。因此,在更不均匀的系统中观察到这一点是令人惊讶的,因为溶液处理和胶体结构通常遭受高光学退相干和非均匀尺寸分布。在这里,我们概述了在胶体和溶液处理系统中超荧光演示的最新进展,并探索了这些系统所允许的化学和材料科学机会。创造明亮和可调谐的超荧光光源的能力可以使量子信息应用的变革性发展,并促进我们对量子现象的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Corrigendum to: Experimental demonstration of a photonic reservoir computing system based on Fabry Perot laser for multiple tasks processing. Longitudinal chiral forces in photonic integrated waveguides to separate particles with realistically small chirality. Orbital magnetism through inverse Faraday effect in metal clusters. Topological valley-locked waveguides with C4 impurity. Ultrashort pulse biphoton source in lithium niobate nanophotonics at 2 μm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1