Tong Li , Chaoxin Yang , Zhengwei Cai , Zixiao Li , Shengjun Sun , Xiaoyan Wang , Min Zhang , Meng Yue , Hefeng Wang , Xixi Zhang , Dongdong Zheng , Yongchao Yao , Yongsong Luo , Mohamed S. Hamdy , Fatma A. Ibrahim , Xuping Sun , Bo Tang
{"title":"Surface borate layer dramatically enhances the stability of NiFe-layered double hydroxide for alkaline seawater oxidation","authors":"Tong Li , Chaoxin Yang , Zhengwei Cai , Zixiao Li , Shengjun Sun , Xiaoyan Wang , Min Zhang , Meng Yue , Hefeng Wang , Xixi Zhang , Dongdong Zheng , Yongchao Yao , Yongsong Luo , Mohamed S. Hamdy , Fatma A. Ibrahim , Xuping Sun , Bo Tang","doi":"10.1016/j.mtphys.2024.101612","DOIUrl":null,"url":null,"abstract":"<div><div>Seawater electrolysis presents a sustainable approach for producing green hydrogen using renewable energy sources. However, chloride ions (Cl<sup>−</sup>) and their derivatives significantly reduce the durability of anode catalysts, severely hindering their practical application. In this work, we developed a borate (B<sub>i</sub>) modified NiFe layered double hydroxide on nickel foam (NiFe LDH@NiFe-B<sub>i</sub>/NF) to blocks Cl<sup>−</sup> and mitigates chlorine reactions during alkaline seawater oxidation (ASO). In situ electrochemical spectroscopic studies show that the B<sub>i</sub> layer effectively promotes NiOOH formation, thereby enhancing oxygen evolution reaction (OER) activity. Specifically, the B<sub>4</sub>O<sub>7</sub><sup>2−</sup>-rich anionic overlayer effectively prevents Cl<sup>−</sup> adsorption and thus protect the active site during ASO. As a result, NiFe LDH@NiFe-B<sub>i</sub>/NF requires a lower overpotential (<em>ƞ</em>) of 354 mV to achieve an industrial current density (<em>j</em>) of 1000 mA cm<sup>−2</sup> compared to NiFe LDH/NF, which requires 407 mV, in a 1 M KOH + seawater. Notably, NiFe LDH@NiFe-B<sub>i</sub>/NF exhibits exceptional long-term electrochemical durability, maintaining stable operation for 600 h at a <em>j</em> of 1000 mA cm<sup>−2</sup> in alkaline seawater. Additionally, membrane electrode assembly fabricated with NiFe LDH@NiFe-B<sub>i</sub>/NF requires lower <em>ƞ</em> to reach the same voltages than Pt/C/NF||RuO<sub>2</sub>/NF. Furthermore, Pt/C/NF||NiFe LDH@NiFe-B<sub>i</sub>/NF operates at 300 mA cm<sup>−2</sup> for 150 h without significant activity degradation.</div></div>","PeriodicalId":18253,"journal":{"name":"Materials Today Physics","volume":"50 ","pages":"Article 101612"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542529324002888","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Seawater electrolysis presents a sustainable approach for producing green hydrogen using renewable energy sources. However, chloride ions (Cl−) and their derivatives significantly reduce the durability of anode catalysts, severely hindering their practical application. In this work, we developed a borate (Bi) modified NiFe layered double hydroxide on nickel foam (NiFe LDH@NiFe-Bi/NF) to blocks Cl− and mitigates chlorine reactions during alkaline seawater oxidation (ASO). In situ electrochemical spectroscopic studies show that the Bi layer effectively promotes NiOOH formation, thereby enhancing oxygen evolution reaction (OER) activity. Specifically, the B4O72−-rich anionic overlayer effectively prevents Cl− adsorption and thus protect the active site during ASO. As a result, NiFe LDH@NiFe-Bi/NF requires a lower overpotential (ƞ) of 354 mV to achieve an industrial current density (j) of 1000 mA cm−2 compared to NiFe LDH/NF, which requires 407 mV, in a 1 M KOH + seawater. Notably, NiFe LDH@NiFe-Bi/NF exhibits exceptional long-term electrochemical durability, maintaining stable operation for 600 h at a j of 1000 mA cm−2 in alkaline seawater. Additionally, membrane electrode assembly fabricated with NiFe LDH@NiFe-Bi/NF requires lower ƞ to reach the same voltages than Pt/C/NF||RuO2/NF. Furthermore, Pt/C/NF||NiFe LDH@NiFe-Bi/NF operates at 300 mA cm−2 for 150 h without significant activity degradation.
海水电解是一种利用可再生能源生产绿色氢的可持续方法。然而,氯离子(Cl−)及其衍生物显著降低了阳极催化剂的耐久性,严重阻碍了其实际应用。在这项工作中,我们开发了硼酸盐(Bi)修饰的NiFe泡沫镍层状双氢氧化物(NiFe LDH@NiFe-Bi/NF),以阻断Cl -并减轻碱性海水氧化(ASO)过程中的氯反应。原位电化学光谱研究表明,Bi层有效促进NiOOH的形成,从而提高析氧反应(OER)活性。具体来说,富含B4O72−的阴离子覆盖层有效地阻止了Cl−的吸附,从而保护了ASO过程中的活性位点。因此,与NiFe LDH/NF相比,NiFe LDH@NiFe-Bi/NF在1 M KOH +海水中需要407 mV的过电位()较低,达到1000 mA cm - 2的工业电流密度(j)。值得注意的是,NiFe LDH@NiFe-Bi/NF表现出优异的长期电化学耐久性,在碱性海水中,在1000 mA cm−2的j下保持600小时的稳定运行。此外,用NiFe LDH@NiFe-Bi/NF制作的膜电极组件比Pt/C/NF||RuO2/NF需要更低的电压才能达到相同的电压。此外,Pt/C/NF||NiFe LDH@NiFe-Bi/NF在300 mA cm - 2下工作150小时,活性没有明显下降。
期刊介绍:
Materials Today Physics is a multi-disciplinary journal focused on the physics of materials, encompassing both the physical properties and materials synthesis. Operating at the interface of physics and materials science, this journal covers one of the largest and most dynamic fields within physical science. The forefront research in materials physics is driving advancements in new materials, uncovering new physics, and fostering novel applications at an unprecedented pace.