Chengwan Yang , Kewei Li , Mengen Hu , Xinyang Li , Ming Li , Xiaoye Hu , Yue Li , Zhulin Huang , Guowen Meng
{"title":"Flexible ZrO2/ZrB2/C nanofiber felt with enhanced microwave absorption and ultralow thermal conductivity","authors":"Chengwan Yang , Kewei Li , Mengen Hu , Xinyang Li , Ming Li , Xiaoye Hu , Yue Li , Zhulin Huang , Guowen Meng","doi":"10.1016/j.jmat.2024.100988","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon-based materials, renowned for their low density, adjustable electrical conductivity, superior corrosion resistance and mechanical properties, and have found extensive applications in the field of electromagnetic wave absorption (EMWA). Despite their merits, the current EMWA and thermal insulation capabilities are not fully optimized, thereby restricting their applications in the aerospace sector. Herein, we introduce a combinatory methodology employing electrospinning followed by pyrolysis to <em>in-situ</em> integrate ZrO<sub>2</sub> and ZrB<sub>2</sub> nanoparticles onto the surface of carbon nanofibers, culminating in a flexible ZrO<sub>2</sub>/ZrB<sub>2</sub>/C nanofiber felt. The integration of ZrO<sub>2</sub> and ZrB<sub>2</sub> nanoparticles significantly augments impedance matching and promotes multifaceted scattering and interfacial polarization. Consequently, the ZrO<sub>2</sub>/ZrB<sub>2</sub>/C nanofiber felt demonstrates a minimum reflection loss (RL<sub>min</sub>) of −54 dB and the effective absorption bandwidth (EAB, RL ≤ −10 dB) is 3.1 GHz. Moreover, the three-dimensional porous architecture and the presence of multiple heterogeneous interfaces endow the ZrO<sub>2</sub>/ZrB<sub>2</sub>/C nanofiber felt with an ultralow thermal conductivity of 0.016 W⸱m<sup>−1</sup>⸱K<sup>−1</sup> at 1100 °C, underscoring its exceptional potential for infrared stealth. This work shows considerable guiding significance for the design of bi-functional EMWA materials with ultralow thermal conductivity in aerospace field.</div></div>","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"11 4","pages":"Article 100988"},"PeriodicalIF":8.4000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352847824002272","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon-based materials, renowned for their low density, adjustable electrical conductivity, superior corrosion resistance and mechanical properties, and have found extensive applications in the field of electromagnetic wave absorption (EMWA). Despite their merits, the current EMWA and thermal insulation capabilities are not fully optimized, thereby restricting their applications in the aerospace sector. Herein, we introduce a combinatory methodology employing electrospinning followed by pyrolysis to in-situ integrate ZrO2 and ZrB2 nanoparticles onto the surface of carbon nanofibers, culminating in a flexible ZrO2/ZrB2/C nanofiber felt. The integration of ZrO2 and ZrB2 nanoparticles significantly augments impedance matching and promotes multifaceted scattering and interfacial polarization. Consequently, the ZrO2/ZrB2/C nanofiber felt demonstrates a minimum reflection loss (RLmin) of −54 dB and the effective absorption bandwidth (EAB, RL ≤ −10 dB) is 3.1 GHz. Moreover, the three-dimensional porous architecture and the presence of multiple heterogeneous interfaces endow the ZrO2/ZrB2/C nanofiber felt with an ultralow thermal conductivity of 0.016 W⸱m−1⸱K−1 at 1100 °C, underscoring its exceptional potential for infrared stealth. This work shows considerable guiding significance for the design of bi-functional EMWA materials with ultralow thermal conductivity in aerospace field.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.