{"title":"MgIn2S4/COF S-scheme heterostructure for improved photocatalytic H2O2 production under pure water and air","authors":"Yong Zhang, Youjun Wang, Yuchen Liu, Shumin Zhang, Yanyan Zhao, Jianjun Zhang","doi":"10.1016/j.jmat.2024.100985","DOIUrl":null,"url":null,"abstract":"Photocatalytic H<sub>2</sub>O<sub>2</sub> production from O<sub>2</sub> and H<sub>2</sub>O is an economical and environmentally sustainable approach. However, the reliance on sacrificial agents and pure O<sub>2</sub> greatly limits the practical application of numerous photocatalysts. Herein, a novel S-scheme photocatalyst composed of MgIn<sub>2</sub>S<sub>4</sub> and covalent organic framework (COF) was developed toward efficient photocatalytic H<sub>2</sub>O<sub>2</sub> evolution under pure water and air. MgIn<sub>2</sub>S<sub>4</sub>/COF (MC) S-scheme heterojunction was constructed by decorating MgIn<sub>2</sub>S<sub>4</sub> nanosheets on hollow spherical COF using wet chemistry. The H<sub>2</sub>O<sub>2</sub> yield of the optimal MC composite in pure water and air was 4.52 mmol⸱g<sup>−1</sup>⸱h<sup>−1</sup> under pure water and air, which was separately 6.6 times and 9.4 times higher than that of pristine MgIn<sub>2</sub>S<sub>4</sub> and COF. Photocatalytic mechanism characterizations confirmed that the continuous 2e<sup>−</sup> O<sub>2</sub> reduction and 4e<sup>−</sup> H<sub>2</sub>O oxidation simultaneously occurred within this reaction system, and both ·O<sub>2</sub><sup>–</sup> and e<sup>–</sup> were pivotal intermediates for H<sub>2</sub>O<sub>2</sub> evolution. The MC S-scheme heterojunction was advantageous to the effective separation and transfer of photogenerated electrons and holes, thereby enhancing the photocatalytic H<sub>2</sub>O<sub>2</sub> production activity. This work offers important guidance for constructing high-efficiency COFs-based S-scheme heterojunction for H<sub>2</sub>O<sub>2</sub> production.","PeriodicalId":16173,"journal":{"name":"Journal of Materiomics","volume":"4 1","pages":""},"PeriodicalIF":8.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materiomics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmat.2024.100985","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Photocatalytic H2O2 production from O2 and H2O is an economical and environmentally sustainable approach. However, the reliance on sacrificial agents and pure O2 greatly limits the practical application of numerous photocatalysts. Herein, a novel S-scheme photocatalyst composed of MgIn2S4 and covalent organic framework (COF) was developed toward efficient photocatalytic H2O2 evolution under pure water and air. MgIn2S4/COF (MC) S-scheme heterojunction was constructed by decorating MgIn2S4 nanosheets on hollow spherical COF using wet chemistry. The H2O2 yield of the optimal MC composite in pure water and air was 4.52 mmol⸱g−1⸱h−1 under pure water and air, which was separately 6.6 times and 9.4 times higher than that of pristine MgIn2S4 and COF. Photocatalytic mechanism characterizations confirmed that the continuous 2e− O2 reduction and 4e− H2O oxidation simultaneously occurred within this reaction system, and both ·O2– and e– were pivotal intermediates for H2O2 evolution. The MC S-scheme heterojunction was advantageous to the effective separation and transfer of photogenerated electrons and holes, thereby enhancing the photocatalytic H2O2 production activity. This work offers important guidance for constructing high-efficiency COFs-based S-scheme heterojunction for H2O2 production.
期刊介绍:
The Journal of Materiomics is a peer-reviewed open-access journal that aims to serve as a forum for the continuous dissemination of research within the field of materials science. It particularly emphasizes systematic studies on the relationships between composition, processing, structure, property, and performance of advanced materials. The journal is supported by the Chinese Ceramic Society and is indexed in SCIE and Scopus. It is commonly referred to as J Materiomics.