Seagrasses under stress: Independent negative effects of elevated temperature and light reduction at multiple levels of organization

IF 3.8 1区 地球科学 Q1 LIMNOLOGY Limnology and Oceanography Pub Date : 2024-12-05 DOI:10.1002/lno.12759
Alissa V. Bass, Laura J. Falkenberg, Benoit Thibodeau
{"title":"Seagrasses under stress: Independent negative effects of elevated temperature and light reduction at multiple levels of organization","authors":"Alissa V. Bass, Laura J. Falkenberg, Benoit Thibodeau","doi":"10.1002/lno.12759","DOIUrl":null,"url":null,"abstract":"Seagrasses are important foundation species, which support coastal biodiversity and provide socioeconomic benefits. However, seagrasses are threatened by anthropogenic changes, including the elevated temperature associated with marine heatwaves (MHWs) and light limitation from eutrophication or increased sedimentation. In this experiment, we exposed the seagrass <jats:italic>Halophila ovalis</jats:italic> to 10‐d of elevated temperature, simulating a MHW, and three light intensities to examine the impacts on multiple levels of organization, that is, growth, productivity, nitrogen cycling, and leaf microbiome. We found that both the MHW temperature and decreased light independently negatively impacted seagrass growth of new leaves, with decreased light also reducing new leaf area and rhizome elongation rate, and the occurrence of MHW temperatures increasing the rate of leaf loss. Similarly, chlorophyll concentration was altered by both stressors independently, with a common response to reduced light (increased chlorophyll concentration) significantly lower under the MHW temperature. Nitrogen assimilation rate into the leaves also decreased under both MHW temperature and reduced light availability. The leaf microbiome shifted in response to the MHW temperature and lower light, with these conditions prompting relatively more anaerobic microbes but less oxidative stress‐tolerant bacteria, and less prokaryotes performing phototrophy and (oxygenic) photoautotrophy. In conclusion, we show elevated temperature representing a MHW and light limitation can drive decreased seagrass growth, chlorophyll concentration, and cause shifts in leaf microbial functional groups, although there was little interaction between stressors. It is therefore important that good water clarity and habitat health is maintained to reduce the susceptibility of seagrasses to extreme climatic events.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"30 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/lno.12759","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Seagrasses are important foundation species, which support coastal biodiversity and provide socioeconomic benefits. However, seagrasses are threatened by anthropogenic changes, including the elevated temperature associated with marine heatwaves (MHWs) and light limitation from eutrophication or increased sedimentation. In this experiment, we exposed the seagrass Halophila ovalis to 10‐d of elevated temperature, simulating a MHW, and three light intensities to examine the impacts on multiple levels of organization, that is, growth, productivity, nitrogen cycling, and leaf microbiome. We found that both the MHW temperature and decreased light independently negatively impacted seagrass growth of new leaves, with decreased light also reducing new leaf area and rhizome elongation rate, and the occurrence of MHW temperatures increasing the rate of leaf loss. Similarly, chlorophyll concentration was altered by both stressors independently, with a common response to reduced light (increased chlorophyll concentration) significantly lower under the MHW temperature. Nitrogen assimilation rate into the leaves also decreased under both MHW temperature and reduced light availability. The leaf microbiome shifted in response to the MHW temperature and lower light, with these conditions prompting relatively more anaerobic microbes but less oxidative stress‐tolerant bacteria, and less prokaryotes performing phototrophy and (oxygenic) photoautotrophy. In conclusion, we show elevated temperature representing a MHW and light limitation can drive decreased seagrass growth, chlorophyll concentration, and cause shifts in leaf microbial functional groups, although there was little interaction between stressors. It is therefore important that good water clarity and habitat health is maintained to reduce the susceptibility of seagrasses to extreme climatic events.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
压力下的海草:在多个组织水平上温度升高和光减少的独立负面影响
海草是重要的基础物种,支持沿海生物多样性并提供社会经济效益。然而,海草受到人为变化的威胁,包括与海洋热浪(MHWs)相关的温度升高以及富营养化或沉积增加造成的光照限制。在本实验中,我们将卵状嗜盐海草(Halophila ovalis)暴露在10‐d的高温环境中,模拟一个最大亮度(MHW)和三种光照强度,以研究对多个组织水平的影响,即生长、生产力、氮循环和叶片微生物群。结果表明,光照温度和光照减少对海草新叶生长均有独立的负向影响,光照减少也会降低新叶面积和根茎伸长率,而光照温度的发生则会增加叶片的损失率。同样,叶绿素浓度也会受到两种胁迫源的独立改变,在高温下,对光线减少(叶绿素浓度增加)的共同响应显著降低。在高温和光效降低的情况下,氮素在叶片中的同化速率也降低了。叶片微生物组随着MHW温度和较低光照的变化而发生变化,这些条件促使厌氧微生物相对增加,耐氧化应激细菌减少,进行光养和(氧)光自养的原核生物减少。综上所述,尽管胁迫因子之间几乎没有相互作用,但温度升高和光照限制会导致海草生长和叶绿素浓度下降,并导致叶片微生物功能群的变化。因此,重要的是保持良好的水质清晰度和生境健康,以减少海草对极端气候事件的易感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Limnology and Oceanography
Limnology and Oceanography 地学-海洋学
CiteScore
8.80
自引率
6.70%
发文量
254
审稿时长
3 months
期刊介绍: Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.
期刊最新文献
Molecular composition of dissolved organic matter from young organic‐rich hydrothermal deep‐sea sediments Processes and microorganisms driving nitrous oxide production in the Benguela Upwelling System A new dynamic distribution model for Antarctic krill reveals interactions with their environment, predators, and the commercial fishery in the south Scotia Sea region Limited degradability of dissolved organic carbon, nitrogen, and phosphorus during contrasting seasons in a tropical coastal environment Eddy dipole differentially influences particle‐associated and water column protistan community composition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1