Modular chem-bio upcycling of waste poly(ethylene terephthalate) to glycolic acid and 2,4-pyridine dicarboxylic acid

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL AIChE Journal Pub Date : 2024-12-06 DOI:10.1002/aic.18686
Zishuai Wang, Yaoqiang Wang, Gang Xiao, Zequn Tang, Shaojie Wang, Yu Jin, Haijia Su
{"title":"Modular chem-bio upcycling of waste poly(ethylene terephthalate) to glycolic acid and 2,4-pyridine dicarboxylic acid","authors":"Zishuai Wang, Yaoqiang Wang, Gang Xiao, Zequn Tang, Shaojie Wang, Yu Jin, Haijia Su","doi":"10.1002/aic.18686","DOIUrl":null,"url":null,"abstract":"Upcycling of waste poly(ethylene terephthalate) (PET) into valuable products represents a promising avenue for advancing carbon neutrality and circular economy. Here, we demonstrate a modular strategy for converting waste PET into glycolic acid (GA) and 2,4-pyridine dicarboxylic acid (2,4-PDCA), achieving an upcycling process and 45% reduction in greenhouse gas emissions. We conducted comprehensive studies on PET hydrolysis, PET-derived ethylene glycol (EG) photooxidation, and PET-derived terephthalic acid (TPA) bioconversion. Utilizing a plasmon-active CuPt nanoalloy, EG oxidation proceeds at mild conditions with impressive EG conversion (94.78%) and GA yield (71.98%). Two <i>Escherichia coli</i> strains were employed to convert TPA into 2,4-PDCA, achieved a 91.03% molar yield. This work successfully accomplishes the comprehensive utilization of waste PET through an environmentally friendly and economically viable strategy, leading to a significant reduction in PET plastic pollution while simultaneously generating substantial economic benefits.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"2 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18686","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Upcycling of waste poly(ethylene terephthalate) (PET) into valuable products represents a promising avenue for advancing carbon neutrality and circular economy. Here, we demonstrate a modular strategy for converting waste PET into glycolic acid (GA) and 2,4-pyridine dicarboxylic acid (2,4-PDCA), achieving an upcycling process and 45% reduction in greenhouse gas emissions. We conducted comprehensive studies on PET hydrolysis, PET-derived ethylene glycol (EG) photooxidation, and PET-derived terephthalic acid (TPA) bioconversion. Utilizing a plasmon-active CuPt nanoalloy, EG oxidation proceeds at mild conditions with impressive EG conversion (94.78%) and GA yield (71.98%). Two Escherichia coli strains were employed to convert TPA into 2,4-PDCA, achieved a 91.03% molar yield. This work successfully accomplishes the comprehensive utilization of waste PET through an environmentally friendly and economically viable strategy, leading to a significant reduction in PET plastic pollution while simultaneously generating substantial economic benefits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
废弃聚对苯二甲酸乙酯的模块化化学生物升级回收制乙醇酸和2,4-吡啶二羧酸
将废弃的聚对苯二甲酸乙二醇酯(PET)升级为有价值的产品是推进碳中和和循环经济的一条有前途的途径。在这里,我们展示了将废弃PET转化为乙醇酸(GA)和2,4-吡啶二羧酸(2,4- pdca)的模块化策略,实现了升级回收过程并减少了45%的温室气体排放。我们对PET水解、PET衍生乙二醇(EG)光氧化和PET衍生对苯二甲酸(TPA)生物转化进行了全面的研究。利用等离子体活性CuPt纳米合金,在温和的条件下进行EG氧化,其EG转化率(94.78%)和GA产率(71.98%)令人印象难忘。利用2株大肠杆菌将TPA转化为2,4- pdca,摩尔产率达到91.03%。这项工作成功地通过环保和经济可行的策略完成了废弃PET的综合利用,在显著减少PET塑料污染的同时产生了可观的经济效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
期刊最新文献
Gas hydrates in future food production: A comprehensive review of the potential of an emerging technology An atomically economical and environmentally benign approach for the scalable synthesis of rare-earth metal-organic framework catalysts On-aim generation of monodisperse droplets from piezoelectric pulsation-driven glass nozzles Breaking barriers for academic-industry sabbaticals Investigation of hydrogen spillover in atomically dispersed metal on WO3 for selective hydrogenation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1