Photonic diffractive generators through sampling noises from scattering media

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-12-06 DOI:10.1038/s41467-024-55058-4
Ziyu Zhan, Hao Wang, Qiang Liu, Xing Fu
{"title":"Photonic diffractive generators through sampling noises from scattering media","authors":"Ziyu Zhan, Hao Wang, Qiang Liu, Xing Fu","doi":"10.1038/s41467-024-55058-4","DOIUrl":null,"url":null,"abstract":"<p>Photonic computing, with potentials of high parallelism, low latency and high energy efficiency, have gained progressive interest at the forefront of neural network (NN) accelerators. However, most existing photonic computing accelerators concentrate on discriminative NNs. Large-scale generative photonic computing machines remain largely unexplored, partly due to poor data accessibility, accuracy and hardware feasibility. Here, we harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise, thereby achieving hardware consistency by solely pursuing the spatial parallelism of light. To realize experimental data accessibility, we design two encoding strategies between images and optical noise latent space that effectively solves the training problem. Furthermore, we utilize advanced photonic NN architectures including cascaded and parallel configurations of diffraction layers to enhance the image generation performance. Our results show that the photonic generator is capable of producing clear and meaningful synthesized images across several standard public datasets. As a photonic generative machine, this work makes an important contribution to photonic computing and paves the way for more sophisticated applications such as real world data augmentation and multi modal generation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"12 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55058-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Photonic computing, with potentials of high parallelism, low latency and high energy efficiency, have gained progressive interest at the forefront of neural network (NN) accelerators. However, most existing photonic computing accelerators concentrate on discriminative NNs. Large-scale generative photonic computing machines remain largely unexplored, partly due to poor data accessibility, accuracy and hardware feasibility. Here, we harness random light scattering in disordered media as a native noise source and leverage large-scale diffractive optical computing to generate images from above noise, thereby achieving hardware consistency by solely pursuing the spatial parallelism of light. To realize experimental data accessibility, we design two encoding strategies between images and optical noise latent space that effectively solves the training problem. Furthermore, we utilize advanced photonic NN architectures including cascaded and parallel configurations of diffraction layers to enhance the image generation performance. Our results show that the photonic generator is capable of producing clear and meaningful synthesized images across several standard public datasets. As a photonic generative machine, this work makes an important contribution to photonic computing and paves the way for more sophisticated applications such as real world data augmentation and multi modal generation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Author Correction: In vivo imaging in mouse spinal cord reveals that microglia prevent degeneration of injured axons Author Correction: Effectiveness of mRNA COVID-19 vaccine booster doses against Omicron severe outcomes Nuclear microRNA 9 mediates G-quadruplex formation and 3D genome organization during TGF-β-induced transcription Role of anthropogenic forcing in Antarctic sea ice variability simulated in climate models Author Correction: Breakdown of the scaling relation of anomalous Hall effect in Kondo lattice ferromagnet USbTe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1