Yushi Morioka, Liping Zhang, William Cooke, Masami Nonaka, Swadhin K. Behera, Syukuro Manabe
{"title":"Role of anthropogenic forcing in Antarctic sea ice variability simulated in climate models","authors":"Yushi Morioka, Liping Zhang, William Cooke, Masami Nonaka, Swadhin K. Behera, Syukuro Manabe","doi":"10.1038/s41467-024-54485-7","DOIUrl":null,"url":null,"abstract":"<p>Antarctic sea ice extent has seen a slight increase over recent decades, yet since 2016, it has undergone a sharp decline, reaching record lows. While the precise impact of anthropogenic forcing remains uncertain, natural fluctuations have been shown to be important for this variability. Our study employs a series of coupled model experiments, revealing that with constant anthropogenic forcing, the primary driver of interannual sea ice variability lies in deep convection within the Southern Ocean, although it is model dependent. However, as anthropogenic forcing increases, the influence of deep convection weakens, and the Southern Annular Mode, an atmospheric intrinsic variability, plays a more significant role in the sea ice fluctuations owing to the shift from a zonal wavenumber-three pattern observed in the historical period. These model results indicate that surface air-sea interaction will play a more prominent role in Antarctic sea ice variability in the future.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"83 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54485-7","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Antarctic sea ice extent has seen a slight increase over recent decades, yet since 2016, it has undergone a sharp decline, reaching record lows. While the precise impact of anthropogenic forcing remains uncertain, natural fluctuations have been shown to be important for this variability. Our study employs a series of coupled model experiments, revealing that with constant anthropogenic forcing, the primary driver of interannual sea ice variability lies in deep convection within the Southern Ocean, although it is model dependent. However, as anthropogenic forcing increases, the influence of deep convection weakens, and the Southern Annular Mode, an atmospheric intrinsic variability, plays a more significant role in the sea ice fluctuations owing to the shift from a zonal wavenumber-three pattern observed in the historical period. These model results indicate that surface air-sea interaction will play a more prominent role in Antarctic sea ice variability in the future.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.