Shubao Jiang, Ming Li, Zhikun Hu, Fangxin Zhang, Xinyu Zhang, Wen Liu, Altyeb Ali Abaker Omer
{"title":"Simultaneous Enhancement of Cooling Performance and Durability of the Polymer Radiative Cooler by a High UV-Reflective Polymer Multilayer Film.","authors":"Shubao Jiang, Ming Li, Zhikun Hu, Fangxin Zhang, Xinyu Zhang, Wen Liu, Altyeb Ali Abaker Omer","doi":"10.1021/acsami.4c17112","DOIUrl":null,"url":null,"abstract":"<p><p>The development of polymer radiative coolers with easy processing, low cost, and high inherent emissivity has significantly promoted the industrialization process of passive daytime radiative cooling. For excellent outdoor durability, however, the traditional strategy of using UV absorbers inevitably weakens the cooling performance of polymer-based coolers. The introduction of a high UV-reflective layer has been proven to be the most effective strategy to eliminate the negative effects of UV absorption and improve the durability of polymer coolers. Here, a polymer multilayer film (PMF) based on an optical interference mechanism is designed, which exhibits an average reflectance of up to 92.3% in the 300-400 nm UV wavebands. Using a TiO<sub>2</sub>-doped epoxy resin (TiO<sub>2</sub>-EP) cooler as an example, the solar reflectance of TiO<sub>2</sub>-EP increases by 5.43% after introducing PMF as a UV reflective layer. Outdoor tests without shading or convection coverage demonstrate that the average cooling temperature of TiO<sub>2</sub>-EP with PMF is further elevated by approximately 1.1 °C. Additionally, its aging rate decreases significantly, and the solar reflectance is 5.08% higher than that of TiO<sub>2</sub>-EP without PMF after 120 h of UV aging experiments. Furthermore, PMF obtains a periodic multilayer structure by multilayer coextrusion, which has the advantages of low cost and the ability to be prepared over a large area. PMF is suitable for any type of polymer cooler, providing an efficient method to further promote large-scale application of polymer coolers.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"69940-69950"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c17112","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The development of polymer radiative coolers with easy processing, low cost, and high inherent emissivity has significantly promoted the industrialization process of passive daytime radiative cooling. For excellent outdoor durability, however, the traditional strategy of using UV absorbers inevitably weakens the cooling performance of polymer-based coolers. The introduction of a high UV-reflective layer has been proven to be the most effective strategy to eliminate the negative effects of UV absorption and improve the durability of polymer coolers. Here, a polymer multilayer film (PMF) based on an optical interference mechanism is designed, which exhibits an average reflectance of up to 92.3% in the 300-400 nm UV wavebands. Using a TiO2-doped epoxy resin (TiO2-EP) cooler as an example, the solar reflectance of TiO2-EP increases by 5.43% after introducing PMF as a UV reflective layer. Outdoor tests without shading or convection coverage demonstrate that the average cooling temperature of TiO2-EP with PMF is further elevated by approximately 1.1 °C. Additionally, its aging rate decreases significantly, and the solar reflectance is 5.08% higher than that of TiO2-EP without PMF after 120 h of UV aging experiments. Furthermore, PMF obtains a periodic multilayer structure by multilayer coextrusion, which has the advantages of low cost and the ability to be prepared over a large area. PMF is suitable for any type of polymer cooler, providing an efficient method to further promote large-scale application of polymer coolers.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.