Dietary high lipid and high plant-protein affected growth performance, liver health, bile acid metabolism and gut microbiota in groupers.

IF 6.1 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE Animal Nutrition Pub Date : 2024-09-26 eCollection Date: 2024-12-01 DOI:10.1016/j.aninu.2024.08.005
Jia Xu, Fan Wang, Chaoqun Hu, Junxiang Lai, Shiwei Xie, Kefu Yu, Fajun Jiang
{"title":"Dietary high lipid and high plant-protein affected growth performance, liver health, bile acid metabolism and gut microbiota in groupers.","authors":"Jia Xu, Fan Wang, Chaoqun Hu, Junxiang Lai, Shiwei Xie, Kefu Yu, Fajun Jiang","doi":"10.1016/j.aninu.2024.08.005","DOIUrl":null,"url":null,"abstract":"<p><p>High lipid diets (HLD) and high plant-protein diets (HPD) exhibit potential fishmeal-saving effects but negatively impact liver health and growth performance in fish. We hypothesized that HLD and HPD impair liver health in pearl gentian groupers (<i>Epinephelus fuscoguttatus</i>♂ × <i>Epinephelus lanceolatus</i>♀) through the modulation of intestinal microbiota and bile acid (BA) metabolism. Four diet groups were tested: control diet (CD, 46.21% crude protein, 9.48% crude lipid), HLD (46.37% crude protein, 16.70% crude lipid), HPD (46.50% crude protein, 9.38% crude lipid), and high lipid-high plant-protein diet (HLPD, 46.54% crude protein, 16.67% crude lipid). A total of 300 fish (average body weight = 15.22 ± 0.03 g) were randomly divided into 4 diet treatments (ensuring 3 tanks replicates of each diet treatment, each tank containing 25 fish). After an eight-week feeding period, the HLD and HPD significantly decreased the final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR) and feed intake (FI) in comparison to CD group, with HLPD exacerbating these indicators (<i>P</i> < 0.05). Compared to CD group, the content of total cholesterol (T-CHO) and triglyceride (TG) in liver and serum were significantly increased in HLD group (<i>P</i> < 0.05). Compared to HPD group, the content of T-CHO in liver was significantly decreased, the content of TG in liver and serum were significantly increased in HLPD group (<i>P</i> < 0.05). HLD, HPD, and HLPD impaired liver health by inducing histological damage, inflammation, and oxidative stress. Compared to CD group, the mRNA relative expression of bile salt export pump (<i>bsep</i>) and multidrug resistance protein 3 (<i>mdr3</i>) were significantly increased in HLD group, whereas the mRNA relative expression of sterol-27-hydroxylase (<i>cyp27a1</i>), microsomal epoxide hydrolase (<i>meh</i>), apical sodium-dependent bile acid transporter (<i>asbt</i>), multidrug resistance-associated protein 3 (<i>mrp3</i>), farnesoid X receptor (<i>fxr</i>) and G protein-coupled bile acid receptor 5 (<i>tgr5</i>) were significantly decreased (<i>P</i> < 0.05). Compared to CD group, the mRNA relative expression of <i>mdr3</i>, <i>asbt</i>, <i>mrp3</i>, organic anion transporters 1 (<i>oatp1</i>), <i>meh</i>, <i>fxr</i> and <i>tgr5</i> were significantly decreased in HPD group (<i>P</i> < 0.05). In summary, HLD affects intestinal microbiota, BA metabolism, and lipid metabolism, leading to lipid deposition and liver damage. HPD regulates gut microbiota, BA metabolism, inflammatory responses, and BA receptor expression, impairing grouper liver health. HLPD synergistically combines the adverse effects of HLD and HPD on grouper liver health.</p>","PeriodicalId":8184,"journal":{"name":"Animal Nutrition","volume":"19 ","pages":"370-385"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617871/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.aninu.2024.08.005","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

High lipid diets (HLD) and high plant-protein diets (HPD) exhibit potential fishmeal-saving effects but negatively impact liver health and growth performance in fish. We hypothesized that HLD and HPD impair liver health in pearl gentian groupers (Epinephelus fuscoguttatus♂ × Epinephelus lanceolatus♀) through the modulation of intestinal microbiota and bile acid (BA) metabolism. Four diet groups were tested: control diet (CD, 46.21% crude protein, 9.48% crude lipid), HLD (46.37% crude protein, 16.70% crude lipid), HPD (46.50% crude protein, 9.38% crude lipid), and high lipid-high plant-protein diet (HLPD, 46.54% crude protein, 16.67% crude lipid). A total of 300 fish (average body weight = 15.22 ± 0.03 g) were randomly divided into 4 diet treatments (ensuring 3 tanks replicates of each diet treatment, each tank containing 25 fish). After an eight-week feeding period, the HLD and HPD significantly decreased the final body weight (FBW), weight gain rate (WGR), specific growth rate (SGR) and feed intake (FI) in comparison to CD group, with HLPD exacerbating these indicators (P < 0.05). Compared to CD group, the content of total cholesterol (T-CHO) and triglyceride (TG) in liver and serum were significantly increased in HLD group (P < 0.05). Compared to HPD group, the content of T-CHO in liver was significantly decreased, the content of TG in liver and serum were significantly increased in HLPD group (P < 0.05). HLD, HPD, and HLPD impaired liver health by inducing histological damage, inflammation, and oxidative stress. Compared to CD group, the mRNA relative expression of bile salt export pump (bsep) and multidrug resistance protein 3 (mdr3) were significantly increased in HLD group, whereas the mRNA relative expression of sterol-27-hydroxylase (cyp27a1), microsomal epoxide hydrolase (meh), apical sodium-dependent bile acid transporter (asbt), multidrug resistance-associated protein 3 (mrp3), farnesoid X receptor (fxr) and G protein-coupled bile acid receptor 5 (tgr5) were significantly decreased (P < 0.05). Compared to CD group, the mRNA relative expression of mdr3, asbt, mrp3, organic anion transporters 1 (oatp1), meh, fxr and tgr5 were significantly decreased in HPD group (P < 0.05). In summary, HLD affects intestinal microbiota, BA metabolism, and lipid metabolism, leading to lipid deposition and liver damage. HPD regulates gut microbiota, BA metabolism, inflammatory responses, and BA receptor expression, impairing grouper liver health. HLPD synergistically combines the adverse effects of HLD and HPD on grouper liver health.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高脂和高植物蛋白饲料影响石斑鱼生长性能、肝脏健康、胆汁酸代谢和肠道微生物群。
高脂饲料(HLD)和高植物蛋白饲料(HPD)具有潜在的节省鱼粉的作用,但对鱼类的肝脏健康和生长性能有负面影响。我们推测HLD和HPD通过调节肠道菌群和胆汁酸(BA)代谢来损害龙胆石斑鱼(Epinephelus fuscoguttatus♂× Epinephelus lanceolatus♀)肝脏健康。试验设4个饲粮组:对照组饲粮(CD, 46.21%粗蛋白质,9.48%粗脂肪)、HLD(46.37%粗蛋白质,16.70%粗脂肪)、HPD(46.50%粗蛋白质,9.38%粗脂肪)和高脂-高植物蛋白饲粮(HLPD, 46.54%粗蛋白质,16.67%粗脂肪)。试验选取平均体重为15.22±0.03 g的300尾鱼,随机分为4个饲粮处理(每个饲粮处理3个槽重复,每个槽25尾鱼)。饲喂8周后,与CD组相比,HLD和HPD显著降低了末重(FBW)、增重率(WGR)、特定生长率(SGR)和采食量(FI),且HLD组使这些指标(P P P bsep)和多药耐药蛋白3 (mdr3)显著升高,而甾醇27-羟化酶(cyp27a1)、微体环氧化酶(meh)、顶钠依赖性胆汁酸转运蛋白(asbt)、多药耐药相关蛋白3 (mrp3)、法尼索酮X受体(fxr)和G蛋白偶联胆汁酸受体5 (tgr5)显著降低(pmdr3、asbt、mrp3、有机阴离子转运蛋白1 (oatp1)、meh、fxr和tgr5显著降低)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
文献相关原料
公司名称
产品信息
阿拉丁
betaine
阿拉丁
ethoxyquin
来源期刊
Animal Nutrition
Animal Nutrition Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
7.40
自引率
3.20%
发文量
172
审稿时长
12 weeks
期刊介绍: Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to nutrition, and more applied aspects of animal nutrition, such as raw material evaluation, feed additives, nutritive value of novel ingredients and feed safety.
期刊最新文献
Retraction notice to "L-Leucine stimulates glutamate dehydrogenase activity and Glutamate synthesis by regulating mTORC1/SIRT4 pathway in pig liver" [Animal Nutrition 4 (2018) 329-338]. Folic acid alleviates the negative effects of dexamethasone induced stress on production performance in Hyline Brown laying hens. Replacing rice straw with peanut vine and Broussonetia papyrifera silage in beef cattle feed reduced the use of soybean meal. Transcriptome analysis reveals modulations in glycosylation profiles of the mucosal barrier and their potential interaction with gut microbiota in weaned piglets. The impact of combined thymol and rosmarinic acid on the intestinal microbiota and barrier function of the piglets challenged by Escherichia. coli K88
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1