Synthesis and evaluation of drug-loaded silver nanoparticles as hemostatic agents to halt uncontrolled bleeding.

IF 2.4 4区 医学 Q3 CHEMISTRY, MEDICINAL Drug Development and Industrial Pharmacy Pub Date : 2024-12-15 DOI:10.1080/03639045.2024.2439920
Annum Malik, Kifayat Ullah Shah, Syeda Sohaila Naz, Rashna Mirza, Atif Ullah Khan, Nauman Rahim Khan, Sara Qaisar, Gul Majid Khan
{"title":"Synthesis and evaluation of drug-loaded silver nanoparticles as hemostatic agents to halt uncontrolled bleeding.","authors":"Annum Malik, Kifayat Ullah Shah, Syeda Sohaila Naz, Rashna Mirza, Atif Ullah Khan, Nauman Rahim Khan, Sara Qaisar, Gul Majid Khan","doi":"10.1080/03639045.2024.2439920","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this research study was to formulate a cost-effective, stable, less toxic and more efficacious intravenous nanoformulation that could rapidly augment the process of hemostasis.</p><p><strong>Significance: </strong>Silver nanoparticles (AgNPs) evoked platelet activation, whereas alum (AM) neutralized the plasma proteins, causing blood coagulation. Tranexamic acid (TA) inhibited fibrinolysis and stabilized the formed blood clot.</p><p><strong>Methods: </strong>The nanoformulation (NF) was subjected to characterization techniques such as UV-Vis spectrophotometry, FTIR, XRD, TGA and DSC analysis, which elucidated successful drug conjugation.</p><p><strong>Results: </strong>Zeta-sizing confirmed the particle size of NF to be 256.6 nm with 0.497 PDI and a zeta potential of + 9.24 mV. <i>In-vitro</i> release profile exhibited first-order kinetics, indicating sustained release, conferring sustained release of NF for 12 h. NF was hemocompatible at the tested doses, as its extent of hemolysis was < 0.8% and < 1%, following EU and FDA guidelines, respectively. <i>Ex-vivo</i> studies revealed that NF recorded the highest viscosity, i.e. 36.5 cP, and maximum mass of clotted blood, i.e. 17.4 mg, in comparison to other combinations. <i>In-vivo</i> studies indicated a 100-fold dose reduction, i.e. 0.1 mg/kg, compared to the marketed formulation, Transamin®, i.e. 10 mg/kg. 10 folds dose reduction, i.e. 1 mg/kg, exhibited more efficacious results than Transamin®, owing to the synergistic effect and nano-sizing of components.</p><p><strong>Conclusion: </strong>A safe, cost-effective, and relatively less toxic hemostatic nanoparticles were formulated, that can be intravenously administered to halt bleeding within seconds.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-13"},"PeriodicalIF":2.4000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2439920","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The aim of this research study was to formulate a cost-effective, stable, less toxic and more efficacious intravenous nanoformulation that could rapidly augment the process of hemostasis.

Significance: Silver nanoparticles (AgNPs) evoked platelet activation, whereas alum (AM) neutralized the plasma proteins, causing blood coagulation. Tranexamic acid (TA) inhibited fibrinolysis and stabilized the formed blood clot.

Methods: The nanoformulation (NF) was subjected to characterization techniques such as UV-Vis spectrophotometry, FTIR, XRD, TGA and DSC analysis, which elucidated successful drug conjugation.

Results: Zeta-sizing confirmed the particle size of NF to be 256.6 nm with 0.497 PDI and a zeta potential of + 9.24 mV. In-vitro release profile exhibited first-order kinetics, indicating sustained release, conferring sustained release of NF for 12 h. NF was hemocompatible at the tested doses, as its extent of hemolysis was < 0.8% and < 1%, following EU and FDA guidelines, respectively. Ex-vivo studies revealed that NF recorded the highest viscosity, i.e. 36.5 cP, and maximum mass of clotted blood, i.e. 17.4 mg, in comparison to other combinations. In-vivo studies indicated a 100-fold dose reduction, i.e. 0.1 mg/kg, compared to the marketed formulation, Transamin®, i.e. 10 mg/kg. 10 folds dose reduction, i.e. 1 mg/kg, exhibited more efficacious results than Transamin®, owing to the synergistic effect and nano-sizing of components.

Conclusion: A safe, cost-effective, and relatively less toxic hemostatic nanoparticles were formulated, that can be intravenously administered to halt bleeding within seconds.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
82
审稿时长
4.5 months
期刊介绍: The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.
期刊最新文献
Polyethylene glycol complexed with boronophenylalanine as a potential alternative to fructose-boronophenylalanine complexation to increase cellular uptake for BNCT Treatment. Development of immediate release tablet formulations of lornoxicam with hot melt extrusion-based three-dimensional printing technology. AQbD integrated high-performance thin layer chromatographic method for quantitative estimation of Tavaborole in the presence of its degradants and the matrix of nanostructured lipid carriers. Solid dispersion of alectinib HCl: preclinical evaluation for improving bioavailability and establishing an IVIVC model. Potent antiviral action detected in Tontelea micrantha extracts against Alphavirus chikungunya.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1