Signal-in-noise detection across the lifespan in a mouse model of presbycusis.

IF 2.5 2区 医学 Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY Hearing Research Pub Date : 2025-01-01 Epub Date: 2024-11-28 DOI:10.1016/j.heares.2024.109153
Dimitri L Brunelle, Collin R Park, Timothy J Fawcett, Joseph P Walton
{"title":"Signal-in-noise detection across the lifespan in a mouse model of presbycusis.","authors":"Dimitri L Brunelle, Collin R Park, Timothy J Fawcett, Joseph P Walton","doi":"10.1016/j.heares.2024.109153","DOIUrl":null,"url":null,"abstract":"<p><p>The auditory system is constantly tasked with detecting acoustic cues in complex auditory environments. Difficulty hearing speech in noise, largely a result of energetic masking, is a major communication complaint of the elderly, which impacts a third of the global population over 65. The neural mechanisms responsible for processing sound in background noise and subsequently achieving release from energetic masking remain obscure. Furthermore, the senescence of signal-in-noise detection is poorly understood, a phenomenon which could have a myriad of clinical implications. We tested over 300 CBA/CaJ mice aged 1-27 months on tone-in-noise detection ability utilizing prepulse inhibition of the acoustic startle response with a machine learning startle classifier. We found that mice developed profound tone-in-noise detection deficits throughout their lifespan as evidenced by Rd', a detection metric derived from signal detection theory. The most severe decline in Rd' corresponded to a 2.54-fold decrease in tone-in-noise detection across the lifespan. Our findings suggest that CBA/CaJ mice are an appropriate model to study the role of age-related hearing loss in the context of signal-in-noise masking.</p>","PeriodicalId":12881,"journal":{"name":"Hearing Research","volume":"455 ","pages":"109153"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hearing Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.heares.2024.109153","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The auditory system is constantly tasked with detecting acoustic cues in complex auditory environments. Difficulty hearing speech in noise, largely a result of energetic masking, is a major communication complaint of the elderly, which impacts a third of the global population over 65. The neural mechanisms responsible for processing sound in background noise and subsequently achieving release from energetic masking remain obscure. Furthermore, the senescence of signal-in-noise detection is poorly understood, a phenomenon which could have a myriad of clinical implications. We tested over 300 CBA/CaJ mice aged 1-27 months on tone-in-noise detection ability utilizing prepulse inhibition of the acoustic startle response with a machine learning startle classifier. We found that mice developed profound tone-in-noise detection deficits throughout their lifespan as evidenced by Rd', a detection metric derived from signal detection theory. The most severe decline in Rd' corresponded to a 2.54-fold decrease in tone-in-noise detection across the lifespan. Our findings suggest that CBA/CaJ mice are an appropriate model to study the role of age-related hearing loss in the context of signal-in-noise masking.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Hearing Research
Hearing Research 医学-耳鼻喉科学
CiteScore
5.30
自引率
14.30%
发文量
163
审稿时长
75 days
期刊介绍: The aim of the journal is to provide a forum for papers concerned with basic peripheral and central auditory mechanisms. Emphasis is on experimental and clinical studies, but theoretical and methodological papers will also be considered. The journal publishes original research papers, review and mini- review articles, rapid communications, method/protocol and perspective articles. Papers submitted should deal with auditory anatomy, physiology, psychophysics, imaging, modeling and behavioural studies in animals and humans, as well as hearing aids and cochlear implants. Papers dealing with the vestibular system are also considered for publication. Papers on comparative aspects of hearing and on effects of drugs and environmental contaminants on hearing function will also be considered. Clinical papers will be accepted when they contribute to the understanding of normal and pathological hearing functions.
期刊最新文献
Administration of nicotinamide mononucleotide suppresses the progression of age-related hearing loss in mice. Visualizing motions within the cochlea's organ of Corti and illuminating cochlear mechanics with optical coherence tomography. Brain activation patterns in normal hearing adults: An fNIRS Study using an adapted clinical speech comprehension task. Signal-in-noise detection across the lifespan in a mouse model of presbycusis. Why does tinnitus vary with naps? A polysomnographic prospective study exploring the somatosensory hypothesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1