Jingjing Zhao, Yahui Li, Yingying Huang, Peng Su, Fujiao Nie, Pishan Yang, Chengzhe Yang
{"title":"Tumor-Derived GDF15 Induces Tumor Associated Fibroblast Transformation From BMSCs and Fibroblasts in Oral Squamous Cell Carcinoma.","authors":"Jingjing Zhao, Yahui Li, Yingying Huang, Peng Su, Fujiao Nie, Pishan Yang, Chengzhe Yang","doi":"10.1002/jcp.31498","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer associated fibroblasts (CAFs) are the predominant stromal cell-type in the solid tumor microenvironment, originating from various cell types and playing a crucial role in promoting tumor progression and metastasis The generation of CAFs is influenced by complex factors secreted by tumor cells, with particular emphasis on transforming growth factor-β (TGF-β). However, it remains largely unknown whether growth/differentiation factor-15 (GDF15), as a member of the TGF-β superfamily, exerts similar effects to TGF-β in oral squamous cell carcinoma (OSCC). In this study, we investigated the impact of GDF15 derived from tumor cells on CAF transformation and elucidated the underlying mechanisms. Exogenous GDF15 and OSCC cells induced the transformation of bone marrow mesenchymal stem cells (BMSCs) and human gingival fibroblasts (HGFs) into CAFs, as evidenced by α-smooth muscle actin (α-SMA) as a phenotypic marker and TGF-β, interleukin 6 (IL-6), and vascular endothelial-derived growth factor (VEGF) as functional markers. Conversely, knockdown of GDF15 in OSCC cells reversed CAF transformation. Mechanistically, extracellular signal-regulated kinases 1/2(ERK1/2) pathway was associated with GDF15-mediated promotion of CAF transformation. Furthermore, OSCC-induced CAFs enhanced migration and invasion abilities of OSCC cells; but this pro-cancer effect was abolished upon knockdown of GDF15 in OSCC cells. Subcutaneous coinjection of OSCC cells with BMSCs or HGFs into mice revealed the promoted tumor growth along with increased expression levels of α-SMA and Ki67 compared with alone OSCC cells injection; these effects were attenuated when GDF15 was knocked down in OSCC cells. Collectively, our findings suggest that tumor-derived GDF15 contributes to the progression of OSCC by promoting CAF transformation through activation of the ERK1/2 pathway.</p>","PeriodicalId":15220,"journal":{"name":"Journal of Cellular Physiology","volume":" ","pages":"e31498"},"PeriodicalIF":4.5000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cellular Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/jcp.31498","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer associated fibroblasts (CAFs) are the predominant stromal cell-type in the solid tumor microenvironment, originating from various cell types and playing a crucial role in promoting tumor progression and metastasis The generation of CAFs is influenced by complex factors secreted by tumor cells, with particular emphasis on transforming growth factor-β (TGF-β). However, it remains largely unknown whether growth/differentiation factor-15 (GDF15), as a member of the TGF-β superfamily, exerts similar effects to TGF-β in oral squamous cell carcinoma (OSCC). In this study, we investigated the impact of GDF15 derived from tumor cells on CAF transformation and elucidated the underlying mechanisms. Exogenous GDF15 and OSCC cells induced the transformation of bone marrow mesenchymal stem cells (BMSCs) and human gingival fibroblasts (HGFs) into CAFs, as evidenced by α-smooth muscle actin (α-SMA) as a phenotypic marker and TGF-β, interleukin 6 (IL-6), and vascular endothelial-derived growth factor (VEGF) as functional markers. Conversely, knockdown of GDF15 in OSCC cells reversed CAF transformation. Mechanistically, extracellular signal-regulated kinases 1/2(ERK1/2) pathway was associated with GDF15-mediated promotion of CAF transformation. Furthermore, OSCC-induced CAFs enhanced migration and invasion abilities of OSCC cells; but this pro-cancer effect was abolished upon knockdown of GDF15 in OSCC cells. Subcutaneous coinjection of OSCC cells with BMSCs or HGFs into mice revealed the promoted tumor growth along with increased expression levels of α-SMA and Ki67 compared with alone OSCC cells injection; these effects were attenuated when GDF15 was knocked down in OSCC cells. Collectively, our findings suggest that tumor-derived GDF15 contributes to the progression of OSCC by promoting CAF transformation through activation of the ERK1/2 pathway.
期刊介绍:
The Journal of Cellular Physiology publishes reports of high biological significance in areas of eukaryotic cell biology and physiology, focusing on those articles that adopt a molecular mechanistic approach to investigate cell structure and function. There is appreciation for the application of cellular, biochemical, molecular and in vivo genetic approaches, as well as the power of genomics, proteomics, bioinformatics and systems biology. In particular, the Journal encourages submission of high-interest papers investigating the genetic and epigenetic regulation of proliferation and phenotype as well as cell fate and lineage commitment by growth factors, cytokines and their cognate receptors and signal transduction pathways that influence the expression, integration and activities of these physiological mediators. Similarly, the Journal encourages submission of manuscripts exploring the regulation of growth and differentiation by cell adhesion molecules in addition to the interplay between these processes and those induced by growth factors and cytokines. Studies on the genes and processes that regulate cell cycle progression and phase transition in eukaryotic cells, and the mechanisms that determine whether cells enter quiescence, proliferate or undergo apoptosis are also welcomed. Submission of papers that address contributions of the extracellular matrix to cellular phenotypes and physiological control as well as regulatory mechanisms governing fertilization, embryogenesis, gametogenesis, cell fate, lineage commitment, differentiation, development and dynamic parameters of cell motility are encouraged. Finally, the investigation of stem cells and changes that differentiate cancer cells from normal cells including studies on the properties and functions of oncogenes and tumor suppressor genes will remain as one of the major interests of the Journal.