Role of vascular endothelium and exosomes in cancer progression and therapy (Review).

IF 4.5 3区 医学 Q1 ONCOLOGY International journal of oncology Pub Date : 2025-01-01 Epub Date: 2024-12-05 DOI:10.3892/ijo.2024.5712
Yonghao Dai, Yutong Yao, Yuquan He, Xin Hu
{"title":"Role of vascular endothelium and exosomes in cancer progression and therapy (Review).","authors":"Yonghao Dai, Yutong Yao, Yuquan He, Xin Hu","doi":"10.3892/ijo.2024.5712","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer poses a significant global health challenge and its progression is intricately connected to the interplay among various cell types and molecular pathways. In recent years, research has focused on the roles of vascular endothelial cells (VECs) and exosomes within the tumor microenvironment. Anomalies in tumor vascular integrity and function create a conducive milieu for cancer cell proliferation. Despite efforts in clinical anti‑angiogenic interventions, the anticipated outcomes remain elusive. VECs have the capability to transition into mesenchymal cells through endothelial‑to‑mesenchymal transition, thereby affecting cancer advancement. Exosomes are minute membrane‑bound vesicles generated by cells, serving as vital extracellular elements that facilitate cell‑to‑cell communication. They participate in modulating the tumor microenvironment, thereby influencing tumor progression, metastasis, drug resistance and angiogenesis. Additionally, exosomes serve as efficient carriers for drug delivery, as well as targeting and suppressing tumor cells. In summary, understanding the intricate and interconnected mechanisms of VECs and exosomes in cancer, encompassing tumor angiogenesis, microenvironment modulation and immune regulation, is crucial. A comprehensive exploration of these mechanisms may provide insight into cancer treatment and prevention and yield novel therapeutic targets.</p>","PeriodicalId":14175,"journal":{"name":"International journal of oncology","volume":"66 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684794/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/ijo.2024.5712","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer poses a significant global health challenge and its progression is intricately connected to the interplay among various cell types and molecular pathways. In recent years, research has focused on the roles of vascular endothelial cells (VECs) and exosomes within the tumor microenvironment. Anomalies in tumor vascular integrity and function create a conducive milieu for cancer cell proliferation. Despite efforts in clinical anti‑angiogenic interventions, the anticipated outcomes remain elusive. VECs have the capability to transition into mesenchymal cells through endothelial‑to‑mesenchymal transition, thereby affecting cancer advancement. Exosomes are minute membrane‑bound vesicles generated by cells, serving as vital extracellular elements that facilitate cell‑to‑cell communication. They participate in modulating the tumor microenvironment, thereby influencing tumor progression, metastasis, drug resistance and angiogenesis. Additionally, exosomes serve as efficient carriers for drug delivery, as well as targeting and suppressing tumor cells. In summary, understanding the intricate and interconnected mechanisms of VECs and exosomes in cancer, encompassing tumor angiogenesis, microenvironment modulation and immune regulation, is crucial. A comprehensive exploration of these mechanisms may provide insight into cancer treatment and prevention and yield novel therapeutic targets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血管内皮和外泌体在癌症进展和治疗中的作用(综述)。
癌症是一项重大的全球健康挑战,其进展与各种细胞类型和分子途径之间的相互作用错综复杂。近年来,血管内皮细胞(VECs)和外泌体在肿瘤微环境中的作用成为研究热点。肿瘤血管完整性和功能的异常为癌细胞的增殖创造了有利的环境。尽管在临床抗血管生成干预方面做出了努力,但预期的结果仍然难以捉摸。VECs能够通过内皮细胞向间充质细胞的转化转化为间充质细胞,从而影响癌症的进展。外泌体是由细胞产生的微小的膜结合囊泡,作为促进细胞间通信的重要细胞外元素。它们参与调节肿瘤微环境,从而影响肿瘤的进展、转移、耐药和血管生成。此外,外泌体作为药物递送的有效载体,以及靶向和抑制肿瘤细胞。总之,了解VECs和外泌体在癌症中的复杂和相互关联的机制,包括肿瘤血管生成、微环境调节和免疫调节,是至关重要的。对这些机制的全面探索可能为癌症的治疗和预防提供新的见解,并产生新的治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
157
审稿时长
2.1 months
期刊介绍: The main aim of Spandidos Publications is to facilitate scientific communication in a clear, concise and objective manner, while striving to provide prompt publication of original works of high quality. The journals largely concentrate on molecular and experimental medicine, oncology, clinical and experimental cancer treatment and biomedical research. All journals published by Spandidos Publications Ltd. maintain the highest standards of quality, and the members of their Editorial Boards are world-renowned scientists.
期刊最新文献
Emerging roles of angiopoietin‑like 4 in human tumors (Review). LGR4 promotes proliferation and homing via activation of the NF‑κB signaling pathway in multiple myeloma. SUCLG1 promotes aerobic respiration and progression in plexiform neurofibroma. [Retracted] Differential effects of PXD101 (belinostat) on androgen-dependent and androgen-independent prostate cancer models. Exploring the antiproliferative effect of PI3K/Akt/mTOR pathway and CDK4/6 inhibitors in human papillomavirus‑positive and ‑negative head and neck squamous cell carcinoma cell lines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1