A transcriptomic comparison of in vitro models of the human placenta.

IF 3 2区 医学 Q2 DEVELOPMENTAL BIOLOGY Placenta Pub Date : 2025-01-01 Epub Date: 2024-11-26 DOI:10.1016/j.placenta.2024.11.007
Samantha Lapehn, Sidharth Nair, Evan J Firsick, James MacDonald, Ciara Thoreson, James A Litch, Nicole R Bush, Leena Kadam, Sylvie Girard, Leslie Myatt, Bhagwat Prasad, Sheela Sathyanarayana, Alison G Paquette
{"title":"A transcriptomic comparison of in vitro models of the human placenta.","authors":"Samantha Lapehn, Sidharth Nair, Evan J Firsick, James MacDonald, Ciara Thoreson, James A Litch, Nicole R Bush, Leena Kadam, Sylvie Girard, Leslie Myatt, Bhagwat Prasad, Sheela Sathyanarayana, Alison G Paquette","doi":"10.1016/j.placenta.2024.11.007","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Selecting an in vitro culture model of the human placenta is challenging due to representation of different trophoblast cell types with distinct biological roles and limited comparative studies that define key characteristics of these models. The aim of this research was to compare the transcriptomes of common in vitro models of the human placenta compared to bulk human placental tissue.</p><p><strong>Methods: </strong>We performed differential gene expression analysis on publicly available transcriptomic data from 7 in vitro models of the human placenta (HTR-8/SVneo, BeWo, JEG-3, JAR, Primary Trophoblasts, Villous Explants, and Trophoblast Stem Cells) and compared to bulk placental tissue from 2 cohort studies (CANDLE and GAPPS) or individual trophoblast cell types derived from bulk placental tissue.</p><p><strong>Results: </strong>All in vitro placental models had a substantial number of differentially expressed genes (DEGs, FDR<0.01) compared to the CANDLE and GAPPS placentas (Average DEGs = 10,624), and the individual trophoblast cell types (Average DEGs = 5413), indicating that there are vast differences in gene expression. Hierarchical clustering identified 54 gene clusters with distinct expression profiles across placental models, with 23 clusters enriched for specific KEGG pathways. Placental cell lines were classified by fetal sex based on expression of Y-chromosome genes that identified HTR-8/SVneo cells as female origin, while JEG-3, JAR, and BeWo cells are of male origin.</p><p><strong>Discussion: </strong>None of the models were a close approximation of the human bulk placental transcriptome, highlighting the challenges with model selection. To enable appropriate model selection, we adapted our data into a web application: \"Comparative Transcriptomic Placental Model Atlas (CTPMA)\".</p>","PeriodicalId":20203,"journal":{"name":"Placenta","volume":"159 ","pages":"52-61"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Placenta","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.placenta.2024.11.007","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Selecting an in vitro culture model of the human placenta is challenging due to representation of different trophoblast cell types with distinct biological roles and limited comparative studies that define key characteristics of these models. The aim of this research was to compare the transcriptomes of common in vitro models of the human placenta compared to bulk human placental tissue.

Methods: We performed differential gene expression analysis on publicly available transcriptomic data from 7 in vitro models of the human placenta (HTR-8/SVneo, BeWo, JEG-3, JAR, Primary Trophoblasts, Villous Explants, and Trophoblast Stem Cells) and compared to bulk placental tissue from 2 cohort studies (CANDLE and GAPPS) or individual trophoblast cell types derived from bulk placental tissue.

Results: All in vitro placental models had a substantial number of differentially expressed genes (DEGs, FDR<0.01) compared to the CANDLE and GAPPS placentas (Average DEGs = 10,624), and the individual trophoblast cell types (Average DEGs = 5413), indicating that there are vast differences in gene expression. Hierarchical clustering identified 54 gene clusters with distinct expression profiles across placental models, with 23 clusters enriched for specific KEGG pathways. Placental cell lines were classified by fetal sex based on expression of Y-chromosome genes that identified HTR-8/SVneo cells as female origin, while JEG-3, JAR, and BeWo cells are of male origin.

Discussion: None of the models were a close approximation of the human bulk placental transcriptome, highlighting the challenges with model selection. To enable appropriate model selection, we adapted our data into a web application: "Comparative Transcriptomic Placental Model Atlas (CTPMA)".

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Placenta
Placenta 医学-发育生物学
CiteScore
6.30
自引率
10.50%
发文量
391
审稿时长
78 days
期刊介绍: Placenta publishes high-quality original articles and invited topical reviews on all aspects of human and animal placentation, and the interactions between the mother, the placenta and fetal development. Topics covered include evolution, development, genetics and epigenetics, stem cells, metabolism, transport, immunology, pathology, pharmacology, cell and molecular biology, and developmental programming. The Editors welcome studies on implantation and the endometrium, comparative placentation, the uterine and umbilical circulations, the relationship between fetal and placental development, clinical aspects of altered placental development or function, the placental membranes, the influence of paternal factors on placental development or function, and the assessment of biomarkers of placental disorders.
期刊最新文献
Regulation of macrophage polarization by metformin through inhibition of TLR4/NF-κB pathway to improve pre-eclampsia. Placental alkaline phosphatase (PLAP): Is it exclusively placental? The overview of lactylation in the placenta of preeclampsia. Ferumoxytol-enhanced MRI of retroplacental clear space disruption in placenta accreta spectrum. A transcriptomic comparison of in vitro models of the human placenta.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1