Deciphering proteins in Alzheimer's disease: A new Mendelian randomization method integrated with AlphaFold3 for 3D structure prediction.

IF 11.1 Q1 CELL BIOLOGY Cell genomics Pub Date : 2024-12-11 Epub Date: 2024-12-04 DOI:10.1016/j.xgen.2024.100700
Minhao Yao, Gary W Miller, Badri N Vardarajan, Andrea A Baccarelli, Zijian Guo, Zhonghua Liu
{"title":"Deciphering proteins in Alzheimer's disease: A new Mendelian randomization method integrated with AlphaFold3 for 3D structure prediction.","authors":"Minhao Yao, Gary W Miller, Badri N Vardarajan, Andrea A Baccarelli, Zijian Guo, Zhonghua Liu","doi":"10.1016/j.xgen.2024.100700","DOIUrl":null,"url":null,"abstract":"<p><p>Hidden confounding biases hinder identifying causal protein biomarkers for Alzheimer's disease in non-randomized studies. While Mendelian randomization (MR) can mitigate these biases using protein quantitative trait loci (pQTLs) as instrumental variables, some pQTLs violate core assumptions, leading to biased conclusions. To address this, we propose MR-SPI, a novel MR method that selects valid pQTL instruments using Leo Tolstoy's Anna Karenina principle and performs robust post-selection inference. Integrating MR-SPI with AlphaFold3, we developed a computational pipeline to identify causal protein biomarkers and predict 3D structural changes. Applied to genome-wide proteomics data from 54,306 UK Biobank participants and 455,258 subjects (71,880 cases and 383,378 controls) for a genome-wide association study of Alzheimer's disease, we identified seven proteins (TREM2, PILRB, PILRA, EPHA1, CD33, RET, and CD55) with structural alterations due to missense mutations. These findings offer insights into the etiology and potential drug targets for Alzheimer's disease.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100700"},"PeriodicalIF":11.1000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2024.100700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hidden confounding biases hinder identifying causal protein biomarkers for Alzheimer's disease in non-randomized studies. While Mendelian randomization (MR) can mitigate these biases using protein quantitative trait loci (pQTLs) as instrumental variables, some pQTLs violate core assumptions, leading to biased conclusions. To address this, we propose MR-SPI, a novel MR method that selects valid pQTL instruments using Leo Tolstoy's Anna Karenina principle and performs robust post-selection inference. Integrating MR-SPI with AlphaFold3, we developed a computational pipeline to identify causal protein biomarkers and predict 3D structural changes. Applied to genome-wide proteomics data from 54,306 UK Biobank participants and 455,258 subjects (71,880 cases and 383,378 controls) for a genome-wide association study of Alzheimer's disease, we identified seven proteins (TREM2, PILRB, PILRA, EPHA1, CD33, RET, and CD55) with structural alterations due to missense mutations. These findings offer insights into the etiology and potential drug targets for Alzheimer's disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解码阿尔茨海默病中的蛋白质:一种新的孟德尔随机化方法与AlphaFold3相结合,用于3D结构预测。
隐藏的混杂偏差阻碍了在非随机研究中识别阿尔茨海默病的因果蛋白生物标志物。虽然孟德尔随机化(MR)可以利用蛋白质数量性状位点(pqtl)作为工具变量来减轻这些偏差,但一些pqtl违背了核心假设,导致了有偏差的结论。为了解决这个问题,我们提出了MR- spi,这是一种新的MR方法,它使用列夫·托尔斯泰的安娜·卡列尼娜原理选择有效的pQTL仪器,并执行鲁棒的后选择推理。将MR-SPI与AlphaFold3相结合,我们开发了一个计算管道来识别因果蛋白生物标志物并预测3D结构变化。应用来自54,306名UK Biobank参与者和455,258名受试者(71,880例和383,378名对照)的全基因组蛋白质组学数据进行阿尔茨海默病全基因组关联研究,我们确定了7个蛋白(TREM2, PILRB, PILRA, EPHA1, CD33, RET和CD55)由于错义突变而发生结构改变。这些发现为阿尔茨海默病的病因学和潜在的药物靶点提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
期刊最新文献
Genetic mapping of serum metabolome to chronic diseases among Han Chinese. Single-cell DNA sequencing reveals pervasive positive selection throughout preleukemic evolution. Tracing human trait evolution through integrative genomics and temporal annotations. Chromosome-scale genome assembly reveals how repeat elements shape non-coding RNA landscapes active during newt limb regeneration. A multi-modal transformer for cell type-agnostic regulatory predictions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1