CsLAC4, regulated by CsmiR397a, confers drought tolerance to the tea plant by enhancing lignin biosynthesis.

Hongbin Yang, Linxuan Xia, Jingshan Li, Xiaoyu Jia, Xinyue Jia, Yuying Qi, Youben Yu, Weidong Wang
{"title":"CsLAC4, regulated by CsmiR397a, confers drought tolerance to the tea plant by enhancing lignin biosynthesis.","authors":"Hongbin Yang, Linxuan Xia, Jingshan Li, Xiaoyu Jia, Xinyue Jia, Yuying Qi, Youben Yu, Weidong Wang","doi":"10.1007/s44154-024-00199-1","DOIUrl":null,"url":null,"abstract":"<p><p>Drought is a prevalent abiotic stress that commonly affects the quality and yield of tea. Although numerous studies have shown that lignin accumulation holds significant importance in conferring drought tolerance to tea plants, the underlying molecular regulatory mechanisms governing the tea plant's response to drought remain largely elusive. LACCASEs (LACs), which belong to the class of plant copper-containing polyphenol oxidases, have been widely reported to participate in lignin biosynthesis in plants and are implicated in numerous plant life processes, especially in the context of adverse conditions. In this study, we detected the upregulation of CsLAC4 in response to drought induction. Remarkably, the overexpression of CsLAC4 not only substantially increased the lignin content of transgenic Arabidopsis thaliana but also simulated the development of vascular tissues, consequently leading to a significant enhancement in drought tolerance. Moreover, via dual-luciferase assays and transient overexpression in tea leaves, we revealed that CsLAC4 was negatively regulated by the upstream CsmiR397a. Interestingly, the expression of CsmiR397a was downregulated during drought stress in tea plants. Arabidopsis thaliana overexpressing CsmiR397a showed increased sensitivity to drought stress. By transient overexpression of CsmiR397a and CsLAC4 in tea plant leaves, we verified that CsLAC4, which is regulated by CsmiR397a, conferred drought tolerance to tea plants by enhancing lignin biosynthesis. These findings enhance our understanding of the molecular regulatory mechanisms underlying the response of tea plants to drought stress.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"50"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11624182/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44154-024-00199-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Drought is a prevalent abiotic stress that commonly affects the quality and yield of tea. Although numerous studies have shown that lignin accumulation holds significant importance in conferring drought tolerance to tea plants, the underlying molecular regulatory mechanisms governing the tea plant's response to drought remain largely elusive. LACCASEs (LACs), which belong to the class of plant copper-containing polyphenol oxidases, have been widely reported to participate in lignin biosynthesis in plants and are implicated in numerous plant life processes, especially in the context of adverse conditions. In this study, we detected the upregulation of CsLAC4 in response to drought induction. Remarkably, the overexpression of CsLAC4 not only substantially increased the lignin content of transgenic Arabidopsis thaliana but also simulated the development of vascular tissues, consequently leading to a significant enhancement in drought tolerance. Moreover, via dual-luciferase assays and transient overexpression in tea leaves, we revealed that CsLAC4 was negatively regulated by the upstream CsmiR397a. Interestingly, the expression of CsmiR397a was downregulated during drought stress in tea plants. Arabidopsis thaliana overexpressing CsmiR397a showed increased sensitivity to drought stress. By transient overexpression of CsmiR397a and CsLAC4 in tea plant leaves, we verified that CsLAC4, which is regulated by CsmiR397a, conferred drought tolerance to tea plants by enhancing lignin biosynthesis. These findings enhance our understanding of the molecular regulatory mechanisms underlying the response of tea plants to drought stress.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CsLAC4由CsmiR397a调控,通过促进木质素的生物合成,赋予茶树耐旱性。
干旱是一种普遍存在的非生物胁迫,通常会影响茶叶的质量和产量。尽管大量研究表明木质素积累在赋予茶树耐旱性方面具有重要意义,但控制茶树对干旱反应的潜在分子调节机制在很大程度上仍然难以捉摸。laccase (LACs)是一类植物含铜多酚氧化酶,已被广泛报道参与植物木质素的生物合成,并涉及许多植物生命过程,特别是在不利条件下。在本研究中,我们检测到了CsLAC4在干旱诱导下的上调。值得注意的是,CsLAC4的过表达不仅显著提高了转基因拟南芥的木质素含量,而且还模拟了维管组织的发育,从而显著增强了转基因拟南芥的抗旱性。此外,通过双荧光素酶测定和茶叶中的瞬时过表达,我们发现CsLAC4受到上游基因CsmiR397a的负调控。有趣的是,CsmiR397a在茶树干旱胁迫下表达下调。过表达CsmiR397a的拟南芥对干旱胁迫的敏感性增加。通过在茶树叶片中短暂过表达CsmiR397a和CsLAC4,我们证实了CsmiR397a调控的CsLAC4通过促进木质素的生物合成来增强茶树的抗旱性。这些发现增强了我们对茶树对干旱胁迫反应的分子调控机制的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
Candidate genes associated with low temperature tolerance in cucumber adult plants identified by combining GWAS & QTL mapping. Novel endophytic fungus Leptosphaeria sp. strain T-2 improves plant growth and environmental stress tolerance. Utilizing effector-triggered immunity (ETI) as a robust priming agent to protect plants from pathogens. CsLAC4, regulated by CsmiR397a, confers drought tolerance to the tea plant by enhancing lignin biosynthesis. Correction: Zinc metalloprotease FgM35, which targets the wheat zinc-binding protein TaZnBP, contributes to the virulence of Fusarium graminearum.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1