Performance investigation and energy-saving potential of a heat pump-driven liquid desiccant dehumidification system in different climatic conditions

IF 9.9 1区 工程技术 Q1 ENERGY & FUELS Energy Conversion and Management Pub Date : 2024-12-06 DOI:10.1016/j.enconman.2024.119330
Yikai Wang, Wenzhang Li, Qiang Ji, Bai Yang, Suzhou Dai, Yonggao Yin
{"title":"Performance investigation and energy-saving potential of a heat pump-driven liquid desiccant dehumidification system in different climatic conditions","authors":"Yikai Wang, Wenzhang Li, Qiang Ji, Bai Yang, Suzhou Dai, Yonggao Yin","doi":"10.1016/j.enconman.2024.119330","DOIUrl":null,"url":null,"abstract":"For the buildings with higher moisture loads such as natatoriums, it is essential to regulate the air temperature and humidity accurately during the year-round. However, the conventional dehumidification air conditioning system is still commonly utilized, which requires considerable energy consumption. In this paper, the heat pump-driven liquid desiccant dehumidification system integrated with fresh air supply is developed. Nevertheless, considering the multi climate conditions through the year, the operating modes adapted to various conditions are seldom specified, let alone the energy-saving effects compared to traditional dehumidification systems. According to the temperature and moisture diagram, the partitions and corresponding operating modes are firstly presented. Then, the energy consumptions are compared extensively to identify the applicability of each operating mode. The modified temperature-moisture partitions are ultimately presented. Results show that with the introduced auxiliary condenser, the energy efficiency is improved by 7.5% to 63.4% in the summer conditions. Compared with the traditional dehumidification system, the maximum energy-saving rate could reach up to 92%. The optimized system could regulate the relevant components to meet the temperature and humidity requirements of high-humidity buildings throughout the year.","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"221 1","pages":""},"PeriodicalIF":9.9000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.enconman.2024.119330","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

For the buildings with higher moisture loads such as natatoriums, it is essential to regulate the air temperature and humidity accurately during the year-round. However, the conventional dehumidification air conditioning system is still commonly utilized, which requires considerable energy consumption. In this paper, the heat pump-driven liquid desiccant dehumidification system integrated with fresh air supply is developed. Nevertheless, considering the multi climate conditions through the year, the operating modes adapted to various conditions are seldom specified, let alone the energy-saving effects compared to traditional dehumidification systems. According to the temperature and moisture diagram, the partitions and corresponding operating modes are firstly presented. Then, the energy consumptions are compared extensively to identify the applicability of each operating mode. The modified temperature-moisture partitions are ultimately presented. Results show that with the introduced auxiliary condenser, the energy efficiency is improved by 7.5% to 63.4% in the summer conditions. Compared with the traditional dehumidification system, the maximum energy-saving rate could reach up to 92%. The optimized system could regulate the relevant components to meet the temperature and humidity requirements of high-humidity buildings throughout the year.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热泵驱动液体干燥剂除湿系统在不同气候条件下的性能研究及节能潜力
对于湿气负荷较大的建筑物,如游泳馆,全年准确调节空气温湿度至关重要。然而,传统的除湿空调系统仍然被普遍采用,需要相当的能源消耗。本文研制了热泵驱动的带新风的液体除湿系统。然而,考虑到全年的多种气候条件,很少规定适应各种条件的运行模式,更不用说与传统除湿系统相比的节能效果。根据温湿度图,首先给出了分区和相应的工作模式。然后,对能源消耗进行了广泛的比较,以确定每种运行模式的适用性。最后提出了改进后的温湿分区。结果表明,在夏季条件下,引入辅助冷凝器后,节能效果提高了7.5% ~ 63.4%。与传统除湿系统相比,最大节能率可达92%。优化后的系统可以全年调节相关部件,满足高湿建筑对温湿度的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
期刊最新文献
Towards carbon neutrality: The ammonia approach to green steel Theoretical study of a novel ejector-enhanced heat pump system with subcooling defrosting under cold conditions Data-driven systematic methodology for predicting optimal heat pump integration based on temperature levels and refrigerants Research on the heat transfer performance of a ground heat exchanger under the synergistic effect of nanofluid and phase change material Optimal microgrid planning for electricity security in Niamey: A strategic response to sudden supply disruptions from neighboring sources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1