{"title":"Passive technique of generating soliton mode-locked in thulium/holmium doped fiber laser employing MXene/Polyvinyl alcohol film","authors":"Hissah Saedoon Albaqawi, Fekhra Hedhili, Waed Alahmad","doi":"10.1016/j.radphyschem.2024.112461","DOIUrl":null,"url":null,"abstract":"The present study proposes and demonstrates stable passive mode-locking in a laser operating at a wavelength of 2.0 μm by coupling a vanadium carbide MXene/polyvinyl alcohol (V<ce:inf loc=\"post\">2</ce:inf>C/PVA) film, acting as a saturable absorber (SA), into the cavity of a Thulium/Holmium co-doped fiber laser (THDFL). The V<ce:inf loc=\"post\">2</ce:inf>C/PVA film was successfully fabricated through a solution casting method. Initially, the V<ce:inf loc=\"post\">2</ce:inf>C MXene was prepared using the molten salt method, wherein the aluminium (Al) layers were extracted from the V<ce:inf loc=\"post\">2</ce:inf>AlC MAX phase precursor. The fabricated V<ce:inf loc=\"post\">2</ce:inf>C/PVA film SA exhibits favourable nonlinear absorption properties, with recorded values of approximately 50% for modulation depth, 1 kW/cm<ce:sup loc=\"post\">2</ce:sup> for saturation intensity, and 50% for non-saturable loss. Achieving mode-locking at 1958.97 nm required a pump power of 283.5 mW, resulting in a 3-dB bandwidth of 4 nm. The SA generated stable pulses with an 18.69 MHz repetition rate, a pulse width of 1.6 ps, and a high signal-to-noise ratio (SNR) of around 60 dB. The research findings will pave the way for the application of V<ce:inf loc=\"post\">2</ce:inf>C/PVA film SA in the field of ultrafast lasers.","PeriodicalId":20861,"journal":{"name":"Radiation Physics and Chemistry","volume":"39 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Physics and Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.radphyschem.2024.112461","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The present study proposes and demonstrates stable passive mode-locking in a laser operating at a wavelength of 2.0 μm by coupling a vanadium carbide MXene/polyvinyl alcohol (V2C/PVA) film, acting as a saturable absorber (SA), into the cavity of a Thulium/Holmium co-doped fiber laser (THDFL). The V2C/PVA film was successfully fabricated through a solution casting method. Initially, the V2C MXene was prepared using the molten salt method, wherein the aluminium (Al) layers were extracted from the V2AlC MAX phase precursor. The fabricated V2C/PVA film SA exhibits favourable nonlinear absorption properties, with recorded values of approximately 50% for modulation depth, 1 kW/cm2 for saturation intensity, and 50% for non-saturable loss. Achieving mode-locking at 1958.97 nm required a pump power of 283.5 mW, resulting in a 3-dB bandwidth of 4 nm. The SA generated stable pulses with an 18.69 MHz repetition rate, a pulse width of 1.6 ps, and a high signal-to-noise ratio (SNR) of around 60 dB. The research findings will pave the way for the application of V2C/PVA film SA in the field of ultrafast lasers.
期刊介绍:
Radiation Physics and Chemistry is a multidisciplinary journal that provides a medium for publication of substantial and original papers, reviews, and short communications which focus on research and developments involving ionizing radiation in radiation physics, radiation chemistry and radiation processing.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. This could include papers that are very similar to previous publications, only with changed target substrates, employed materials, analyzed sites and experimental methods, report results without presenting new insights and/or hypothesis testing, or do not focus on the radiation effects.