Evaluation of nutrient spatial distribution and heavy metal pollution improvement in small-scale farmland under the action of biochar and microbial organic fertilizer

Zhenyu He, Bo Kang, Leiyu Feng, Yonggao Yin, Jie Yang, Guiqiang Liu, Fusheng Zha
{"title":"Evaluation of nutrient spatial distribution and heavy metal pollution improvement in small-scale farmland under the action of biochar and microbial organic fertilizer","authors":"Zhenyu He, Bo Kang, Leiyu Feng, Yonggao Yin, Jie Yang, Guiqiang Liu, Fusheng Zha","doi":"10.1016/j.still.2024.106386","DOIUrl":null,"url":null,"abstract":"Currently, China is undergoing reforms in its rural land transfer policy. As a traditional agricultural country, the operation and management of small-scale farmland serve as the primary economic source for Chinese farmers. However, small-scale farmland is vulnerable to external influences and lacks sufficient risk-resistance capabilities. Developing a low-cost, long-term improvement model is essential for enhancing small-scale farmland.This paper explores the direct integration of biochar and microbial organic fertilizer into the cultivation process of heavy metal-contaminated farmland. The results indicate that the combined application of biochar and microbial organic fertilizer increased soil fertility by 161 % and enhanced the abundance of the antagonistic Chaetomiaceae by 31.6 %. Geostatistical simulations revealed low variation in soil pH, while fertility and water content exhibited high variability. Furthermore, the partial least squares path model confirmed that biochar and organic fertilizer promote.This study elucidates the improvement mechanisms facilitated by biochar and microbial organic fertilizer, providing valuable insights for the management of small-scale farmland in the context of agricultural reform in China.","PeriodicalId":501007,"journal":{"name":"Soil and Tillage Research","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil and Tillage Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.still.2024.106386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Currently, China is undergoing reforms in its rural land transfer policy. As a traditional agricultural country, the operation and management of small-scale farmland serve as the primary economic source for Chinese farmers. However, small-scale farmland is vulnerable to external influences and lacks sufficient risk-resistance capabilities. Developing a low-cost, long-term improvement model is essential for enhancing small-scale farmland.This paper explores the direct integration of biochar and microbial organic fertilizer into the cultivation process of heavy metal-contaminated farmland. The results indicate that the combined application of biochar and microbial organic fertilizer increased soil fertility by 161 % and enhanced the abundance of the antagonistic Chaetomiaceae by 31.6 %. Geostatistical simulations revealed low variation in soil pH, while fertility and water content exhibited high variability. Furthermore, the partial least squares path model confirmed that biochar and organic fertilizer promote.This study elucidates the improvement mechanisms facilitated by biochar and microbial organic fertilizer, providing valuable insights for the management of small-scale farmland in the context of agricultural reform in China.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物炭与微生物有机肥作用下小农农田养分空间分布及重金属污染改善评价
当前,中国正在进行农村土地流转政策改革。作为一个传统的农业国家,小规模农田的经营管理是中国农民的主要经济来源。然而,小规模农田易受外界影响,缺乏足够的抗风险能力。开发一种低成本、长期的改良模式对于改善小规模农田至关重要。探索将生物炭与微生物有机肥直接整合到重金属污染农田的耕作过程中。结果表明,生物炭与微生物有机肥配施可使土壤肥力提高161 %,拮抗毛藻科植物丰度提高31.6% %。地质统计模拟结果显示,土壤pH值变化不大,而肥力和水分含量变化较大。此外,偏最小二乘路径模型也证实了生物炭和有机肥对土壤养分的促进作用。本研究阐明了生物炭和微生物有机肥对土壤的改善机制,为中国农业改革背景下的小规模农田管理提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conservation agriculture boosts topsoil organic matter by restoring free lipids and lignin phenols biomarkers in distinct fractions Mechanisms of cover crop-derived carbon sequestration in winter wheat fields: Insights from 13C labeling Nitrogen-rich roots regulate microbial- and plant-derived carbon in alkali-saline soil under land-use conversions in the Songnen Plain Field traffic loads on a silty farm site cause shifting and narrowing of soil pore size distribution Calcium lactate as a soil amendment: Mechanistic insights into its effect on salinity, alkalinity, and aggregation in saline-alkaline soils
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1