Determining the Moisture Content of Wood Chips in Inline Industry Applications Using UWB Radio Transmission Signals and Machine Learning

IF 2.2 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Sensors Letters Pub Date : 2024-11-20 DOI:10.1109/LSENS.2024.3502813
T. Sunil Kumar;Daniel Ranta;Daniel Rönnow;Patrik Ottosson
{"title":"Determining the Moisture Content of Wood Chips in Inline Industry Applications Using UWB Radio Transmission Signals and Machine Learning","authors":"T. Sunil Kumar;Daniel Ranta;Daniel Rönnow;Patrik Ottosson","doi":"10.1109/LSENS.2024.3502813","DOIUrl":null,"url":null,"abstract":"Determining moisture content (MC) in wood chips finds its application in many industries, including energy production. In this letter, we aim to develop an automated method for determining MC in woodchips using ultrawideband (UWB) radio signals and machine learning algorithms. First, to acquire UWB signals through wood chips on conveyor belts in industrial plants, we use measurement devices with a radio transmitter and receiver, and a laser sensor to determine the thickness of the wood chips. UWB and laser data corresponding to 1923 samples from four power plants is acquired. Second, we extract the amplitude and delay-based features, and these are finally fed to three different machine learning algorithms, namely, linear regression, artificial neural network (ANN), and ensemble trees to determine the MC. The proposed method achieves best results when the ANN is used. More specifically, our method achieves a mean absolute error (MAE) of 2.75% when the features from both UWB and laser sensors are used for determining MC. The MAE of 3.95% is achieved when features only from UWB data (without the laser) are used for determining MC. Our results for industrial data suggest that the proposed method is effective for determining MC in industrial applications.","PeriodicalId":13014,"journal":{"name":"IEEE Sensors Letters","volume":"8 12","pages":"1-4"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10758725/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Determining moisture content (MC) in wood chips finds its application in many industries, including energy production. In this letter, we aim to develop an automated method for determining MC in woodchips using ultrawideband (UWB) radio signals and machine learning algorithms. First, to acquire UWB signals through wood chips on conveyor belts in industrial plants, we use measurement devices with a radio transmitter and receiver, and a laser sensor to determine the thickness of the wood chips. UWB and laser data corresponding to 1923 samples from four power plants is acquired. Second, we extract the amplitude and delay-based features, and these are finally fed to three different machine learning algorithms, namely, linear regression, artificial neural network (ANN), and ensemble trees to determine the MC. The proposed method achieves best results when the ANN is used. More specifically, our method achieves a mean absolute error (MAE) of 2.75% when the features from both UWB and laser sensors are used for determining MC. The MAE of 3.95% is achieved when features only from UWB data (without the laser) are used for determining MC. Our results for industrial data suggest that the proposed method is effective for determining MC in industrial applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用超宽带无线电传输信号和机器学习来确定木屑在工业应用中的水分含量
测定木屑中的水分含量(MC)在许多行业中都有应用,包括能源生产。在这封信中,我们的目标是开发一种使用超宽带(UWB)无线电信号和机器学习算法来确定木片中MC的自动化方法。首先,为了通过工业工厂传送带上的木屑获取UWB信号,我们使用带有无线电发射器和接收器的测量设备以及激光传感器来确定木屑的厚度。获得了四个电厂1923个样品的超宽带和激光数据。其次,我们提取了基于振幅和延迟的特征,并最终将这些特征馈送到三种不同的机器学习算法,即线性回归,人工神经网络(ANN)和集成树来确定MC。当使用ANN时,所提出的方法获得了最好的结果。更具体地说,当使用超宽带和激光传感器的特征来确定MC时,我们的方法实现了2.75%的平均绝对误差(MAE)。当仅使用超宽带数据(不含激光)的特征来确定MC时,我们的方法实现了3.95%的平均绝对误差。我们对工业数据的结果表明,我们提出的方法对于确定工业应用中的MC是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Sensors Letters
IEEE Sensors Letters Engineering-Electrical and Electronic Engineering
CiteScore
3.50
自引率
7.10%
发文量
194
期刊最新文献
Table of Contents Front Cover IEEE Sensors Council Information IEEE Sensors Letters Subject Categories for Article Numbering Information IEEE Sensors Letters Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1