MONO: Enhancing Bit-Flip Resilience With Bit Homogeneity for Neural Networks

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Embedded Systems Letters Pub Date : 2024-12-05 DOI:10.1109/LES.2024.3444921
Maryam Eslami;Yuhao Liu;Salim Ullah;Mostafa E. Salehi;Reshad Hosseini;Seyed Ahmad Mirsalari;Akash Kumar
{"title":"MONO: Enhancing Bit-Flip Resilience With Bit Homogeneity for Neural Networks","authors":"Maryam Eslami;Yuhao Liu;Salim Ullah;Mostafa E. Salehi;Reshad Hosseini;Seyed Ahmad Mirsalari;Akash Kumar","doi":"10.1109/LES.2024.3444921","DOIUrl":null,"url":null,"abstract":"Deep neural networks (DNNs) have been applied across diverse domains, including safety-critical applications. Past studies indicate that DNNs are very sensitive to changes in weights and activations due to uneven bit-weight distribution in standard number formats like fixed points, which can cause significant output accuracy fluctuations. To address this issue, we introduce a new data type called MONO to enhance bit-flip resilience using uniformity at the bit level by employing symmetric weights for all bit positions. On average, MONO has improved error resilience more effectively than the fixed-point data type, even when utilizing triple modular redundancy (TMR) and most significant bit (MSB) protection, while maintaining low overhead.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"333-336"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10779580/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Deep neural networks (DNNs) have been applied across diverse domains, including safety-critical applications. Past studies indicate that DNNs are very sensitive to changes in weights and activations due to uneven bit-weight distribution in standard number formats like fixed points, which can cause significant output accuracy fluctuations. To address this issue, we introduce a new data type called MONO to enhance bit-flip resilience using uniformity at the bit level by employing symmetric weights for all bit positions. On average, MONO has improved error resilience more effectively than the fixed-point data type, even when utilizing triple modular redundancy (TMR) and most significant bit (MSB) protection, while maintaining low overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MONO:利用位同质性增强神经网络的位翻转弹性
深度神经网络(dnn)已经应用于包括安全关键应用在内的各个领域。过去的研究表明,由于定点等标准数字格式的位权分布不均匀,dnn对权重和激活的变化非常敏感,这会导致输出精度的显著波动。为了解决这个问题,我们引入了一种称为MONO的新数据类型,通过对所有位位置采用对称权重,在位级别使用均匀性来增强位翻转弹性。平均而言,MONO比定点数据类型更有效地提高了错误恢复能力,即使在使用三模冗余(TMR)和最重要位(MSB)保护时也是如此,同时保持低开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
期刊最新文献
Table of Contents Editorial IEEE Embedded Systems Letters Publication Information ViTSen: Bridging Vision Transformers and Edge Computing With Advanced In/Near-Sensor Processing Methodology for Formal Verification of Hardware Safety Strategies Using SMT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1