Energy-Efficient Personalized Federated Continual Learning on Edge

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Embedded Systems Letters Pub Date : 2024-12-05 DOI:10.1109/LES.2024.3439552
Zhao Yang;Haoyang Wang;Qingshuang Sun
{"title":"Energy-Efficient Personalized Federated Continual Learning on Edge","authors":"Zhao Yang;Haoyang Wang;Qingshuang Sun","doi":"10.1109/LES.2024.3439552","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) on the edge devices must support continual learning (CL) to handle continuously evolving the data and perform the model training in an energy-efficient manner to accommodate the devices with limited computational and energy resources. This letter proposes an energy-efficient personalized federated CL (FCL) framework for the edge devices. The network structure on each device is divided into parts for retaining old knowledge and learning new knowledge, training only part of the model to reduce overhead. A data-free parameter selection approach selects important parameters from the trained model to retain old knowledge. During new task learning, a federated search method determines a resource-adaptive personalized model structure for each device. Experimental results demonstrate that our method can effectively support FCL in an energy-efficient manner on the edge devices.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"345-348"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10779516/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Federated learning (FL) on the edge devices must support continual learning (CL) to handle continuously evolving the data and perform the model training in an energy-efficient manner to accommodate the devices with limited computational and energy resources. This letter proposes an energy-efficient personalized federated CL (FCL) framework for the edge devices. The network structure on each device is divided into parts for retaining old knowledge and learning new knowledge, training only part of the model to reduce overhead. A data-free parameter selection approach selects important parameters from the trained model to retain old knowledge. During new task learning, a federated search method determines a resource-adaptive personalized model structure for each device. Experimental results demonstrate that our method can effectively support FCL in an energy-efficient manner on the edge devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效节能个性化联邦持续学习边缘
边缘设备上的联邦学习(FL)必须支持持续学习(CL),以处理不断发展的数据,并以节能的方式执行模型训练,以适应具有有限计算和能源资源的设备。本文提出了一种针对边缘设备的节能个性化联邦CL (FCL)框架。每个设备上的网络结构被分成保留旧知识和学习新知识的部分,只训练部分模型以减少开销。无数据参数选择方法从训练好的模型中选择重要的参数以保留旧的知识。在新任务学习过程中,联邦搜索方法确定每个设备的资源自适应个性化模型结构。实验结果表明,该方法可以有效地在边缘设备上高效地支持FCL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
期刊最新文献
Table of Contents Editorial IEEE Embedded Systems Letters Publication Information ViTSen: Bridging Vision Transformers and Edge Computing With Advanced In/Near-Sensor Processing Methodology for Formal Verification of Hardware Safety Strategies Using SMT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1