HDVQ-VAE: Binary Codebook for Hyperdimensional Latent Representations

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Embedded Systems Letters Pub Date : 2024-12-05 DOI:10.1109/LES.2024.3443881
Austin J. Bryant;Sercan Aygun
{"title":"HDVQ-VAE: Binary Codebook for Hyperdimensional Latent Representations","authors":"Austin J. Bryant;Sercan Aygun","doi":"10.1109/LES.2024.3443881","DOIUrl":null,"url":null,"abstract":"Hyperdimensional computing (HDC) has emerged as a promising paradigm offering lightweight yet powerful computing capabilities with inherent learning characteristics. By leveraging binary hyperdimensional vectors, HDC facilitates efficient and robust data processing, surpassing traditional machine learning (ML) approaches in terms of both speed and resilience. This letter addresses key challenges in HDC systems, particularly the conversion of data into the hyperdimensional domain and the integration of HDC with conventional ML frameworks. We propose a novel solution, the hyperdimensional vector quantized variational auto encoder (HDVQ-VAE), which seamlessly merges binary encodings with codebook representations in ML systems. Our approach significantly reduces memory overhead while enhancing training by replacing traditional codebooks with binary (−1, +1) counterparts. Leveraging this architecture, we demonstrate improved encoding-decoding procedures, producing high-quality images within acceptable peak signal-to-noise ratio (PSNR) ranges. Our work advances HDC by considering efficient ML system deployment to embedded systems.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"325-328"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10779509/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Hyperdimensional computing (HDC) has emerged as a promising paradigm offering lightweight yet powerful computing capabilities with inherent learning characteristics. By leveraging binary hyperdimensional vectors, HDC facilitates efficient and robust data processing, surpassing traditional machine learning (ML) approaches in terms of both speed and resilience. This letter addresses key challenges in HDC systems, particularly the conversion of data into the hyperdimensional domain and the integration of HDC with conventional ML frameworks. We propose a novel solution, the hyperdimensional vector quantized variational auto encoder (HDVQ-VAE), which seamlessly merges binary encodings with codebook representations in ML systems. Our approach significantly reduces memory overhead while enhancing training by replacing traditional codebooks with binary (−1, +1) counterparts. Leveraging this architecture, we demonstrate improved encoding-decoding procedures, producing high-quality images within acceptable peak signal-to-noise ratio (PSNR) ranges. Our work advances HDC by considering efficient ML system deployment to embedded systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HDVQ-VAE:用于超维潜在表示的二进制码本
超维计算(HDC)已经成为一种很有前途的范式,它提供轻量级但强大的计算能力,并具有固有的学习特性。通过利用二元超维向量,HDC促进了高效和稳健的数据处理,在速度和弹性方面超越了传统的机器学习(ML)方法。这封信解决了HDC系统中的关键挑战,特别是将数据转换到超维域以及HDC与传统ML框架的集成。我们提出了一种新的解决方案,即超维矢量量化变分自动编码器(HDVQ-VAE),它无缝地将二进制编码与ML系统中的码本表示合并。我们的方法显著降低了内存开销,同时通过用二进制(−1,+1)对等体替换传统的码本来增强训练。利用这种架构,我们展示了改进的编码解码过程,在可接受的峰值信噪比(PSNR)范围内产生高质量的图像。我们的工作通过考虑将高效的ML系统部署到嵌入式系统来推进HDC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
期刊最新文献
Table of Contents Editorial IEEE Embedded Systems Letters Publication Information ViTSen: Bridging Vision Transformers and Edge Computing With Advanced In/Near-Sensor Processing Methodology for Formal Verification of Hardware Safety Strategies Using SMT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1