MUSIC-Lite: Efficient MUSIC Using Approximate Computing: An OFDM Radar Case Study

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Embedded Systems Letters Pub Date : 2024-12-05 DOI:10.1109/LES.2024.3440208
Rajat Bhattacharjya;Arnab Sarkar;Biswadip Maity;Nikil Dutt
{"title":"MUSIC-Lite: Efficient MUSIC Using Approximate Computing: An OFDM Radar Case Study","authors":"Rajat Bhattacharjya;Arnab Sarkar;Biswadip Maity;Nikil Dutt","doi":"10.1109/LES.2024.3440208","DOIUrl":null,"url":null,"abstract":"Multiple signal classification (MUSIC) is a widely used direction of arrival (DoA)/angle of arrival (AoA) estimation algorithm applied to various application domains, such as autonomous driving, medical imaging, and astronomy. However, MUSIC is computationally expensive and challenging to implement in low-power hardware, requiring exploration of tradeoffs between accuracy, cost, and power. We present MUSIC-lite, which exploits approximate computing to generate a design space exploring accuracy-area-power tradeoffs. This is specifically applied to the computationally intensive singular value decomposition (SVD) component of the MUSIC algorithm in an orthogonal frequency-division multiplexing (OFDM) radar use case. MUSIC-lite incorporates approximate adders into the iterative CORDIC algorithm that is used for hardware implementation of MUSIC, generating interesting accuracy-area-power tradeoffs. Our experiments demonstrate MUSIC-lite’s ability to save an average of 17.25% on-chip area and 19.4% power with a minimal 0.14% error for efficient MUSIC implementations.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"329-332"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10779970/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Multiple signal classification (MUSIC) is a widely used direction of arrival (DoA)/angle of arrival (AoA) estimation algorithm applied to various application domains, such as autonomous driving, medical imaging, and astronomy. However, MUSIC is computationally expensive and challenging to implement in low-power hardware, requiring exploration of tradeoffs between accuracy, cost, and power. We present MUSIC-lite, which exploits approximate computing to generate a design space exploring accuracy-area-power tradeoffs. This is specifically applied to the computationally intensive singular value decomposition (SVD) component of the MUSIC algorithm in an orthogonal frequency-division multiplexing (OFDM) radar use case. MUSIC-lite incorporates approximate adders into the iterative CORDIC algorithm that is used for hardware implementation of MUSIC, generating interesting accuracy-area-power tradeoffs. Our experiments demonstrate MUSIC-lite’s ability to save an average of 17.25% on-chip area and 19.4% power with a minimal 0.14% error for efficient MUSIC implementations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MUSIC- lite:使用近似计算的高效音乐:一个OFDM雷达案例研究
多信号分类(Multiple signal classification, MUSIC)是一种应用广泛的到达方向(DoA)/到达角(AoA)估计算法,应用于自动驾驶、医学成像、天文学等领域。然而,MUSIC在计算上是昂贵的,并且在低功耗硬件中实现具有挑战性,需要探索精度、成本和功耗之间的权衡。我们提出MUSIC-lite,它利用近似计算来生成一个探索精度-面积-功率权衡的设计空间。这特别适用于正交频分复用(OFDM)雷达用例中MUSIC算法的计算密集型奇异值分解(SVD)组件。MUSIC-lite将近似加法器集成到迭代CORDIC算法中,该算法用于MUSIC的硬件实现,生成了有趣的精度-面积-功率权衡。我们的实验证明了MUSIC-lite能够在有效的MUSIC实现中平均节省17.25%的片上面积和19.4%的功耗,最小误差为0.14%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
期刊最新文献
Table of Contents Editorial IEEE Embedded Systems Letters Publication Information ViTSen: Bridging Vision Transformers and Edge Computing With Advanced In/Near-Sensor Processing Methodology for Formal Verification of Hardware Safety Strategies Using SMT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1