Kun Xie, Yuhan Ren, Yujuan Huang, Lingxiao Wang, Lechuan Li, Hanghang Ye, Congfan Yang, Shuangshuang Wang, Guohua Xu, Aiqun Chen
{"title":"A conserved nuclear factor YC subunit, NF-YC3, is essential for arbuscule development.","authors":"Kun Xie, Yuhan Ren, Yujuan Huang, Lingxiao Wang, Lechuan Li, Hanghang Ye, Congfan Yang, Shuangshuang Wang, Guohua Xu, Aiqun Chen","doi":"10.1111/tpj.17195","DOIUrl":null,"url":null,"abstract":"<p><p>Establishing reciprocal symbiosis with arbuscular mycorrhizal (AM) fungi is an important evolutionary strategy of most terrestrial plants to adapt to environmental stresses, especially phosphate (Pi) deficiencies. Identifying the key genes essential for AM symbiosis in plants and dissecting their functional mechanisms will be helpful for the breeding of new crop varieties with enhanced nutrient uptake efficiency. Here, we report a nuclear factor YC subunit-encoding gene, OsNF-YC3, whose expression is specifically induced in arbuscule-containing cells, plays an essential role in AM symbiosis. Knockout of OsNF-YC3 resulted in stunted arbuscule morphology and substantially decreased P accumulation, while overexpressing OsNF-YC3 enhanced mycorrhization and Pi uptake efficiency. OsNF-YC3 is directly regulated by OsPHRs, the major regulators of Pi starvation responses. Chromatin immunoprecipitation sequencing analysis uncovered multiple genes with crucial roles in arbuscule development as its potential downstream targets, including the AM-specific Pi transporter gene OsPT11. OsNF-YC3 can form a heterotrimer with the other two NF-Y subunits, OsNF-YA11 and OsNF-YB11, in yeast. Loss of OsNF-YA11 function also severely impaired arbuscule development in its mutants. Overall, our results highlight an essential role of OsNF-YC3 and its potential interacting NF-Y subunit, OsNF-YA11, in regulating AM symbiosis and arbuscule development.</p>","PeriodicalId":233,"journal":{"name":"The Plant Journal","volume":" ","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Journal","FirstCategoryId":"2","ListUrlMain":"https://doi.org/10.1111/tpj.17195","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Establishing reciprocal symbiosis with arbuscular mycorrhizal (AM) fungi is an important evolutionary strategy of most terrestrial plants to adapt to environmental stresses, especially phosphate (Pi) deficiencies. Identifying the key genes essential for AM symbiosis in plants and dissecting their functional mechanisms will be helpful for the breeding of new crop varieties with enhanced nutrient uptake efficiency. Here, we report a nuclear factor YC subunit-encoding gene, OsNF-YC3, whose expression is specifically induced in arbuscule-containing cells, plays an essential role in AM symbiosis. Knockout of OsNF-YC3 resulted in stunted arbuscule morphology and substantially decreased P accumulation, while overexpressing OsNF-YC3 enhanced mycorrhization and Pi uptake efficiency. OsNF-YC3 is directly regulated by OsPHRs, the major regulators of Pi starvation responses. Chromatin immunoprecipitation sequencing analysis uncovered multiple genes with crucial roles in arbuscule development as its potential downstream targets, including the AM-specific Pi transporter gene OsPT11. OsNF-YC3 can form a heterotrimer with the other two NF-Y subunits, OsNF-YA11 and OsNF-YB11, in yeast. Loss of OsNF-YA11 function also severely impaired arbuscule development in its mutants. Overall, our results highlight an essential role of OsNF-YC3 and its potential interacting NF-Y subunit, OsNF-YA11, in regulating AM symbiosis and arbuscule development.
期刊介绍:
Publishing the best original research papers in all key areas of modern plant biology from the world"s leading laboratories, The Plant Journal provides a dynamic forum for this ever growing international research community.
Plant science research is now at the forefront of research in the biological sciences, with breakthroughs in our understanding of fundamental processes in plants matching those in other organisms. The impact of molecular genetics and the availability of model and crop species can be seen in all aspects of plant biology. For publication in The Plant Journal the research must provide a highly significant new contribution to our understanding of plants and be of general interest to the plant science community.