{"title":"A comprehensive guide to volatolomics data analysis.","authors":"M Skawinski, F J van Schooten, A Smolinska","doi":"10.1088/1752-7163/ad9b46","DOIUrl":null,"url":null,"abstract":"<p><p>Volatolomics (or volatilomics), the study of volatile organic compounds, has emerged as a significant branch of metabolomics due to its potential for non-invasive diagnostics and disease monitoring. However, the analysis of high-resolution data from mass spectrometry and gas sensor array-based instruments remains challenging. The careful consideration of experimental design, data collection, and processing strategies is essential to enhance the quality of results obtained from subsequent analyses. This comprehensive guide provides an in-depth exploration of volatolomics data analysis, highlighting the essential steps, such as data cleaning, pretreatment, and the application of statistical and machine learning techniques, including dimensionality reduction, clustering, classification, and variable selection. The choice of these methodologies, along with data handling practices, such as missing data imputation, outlier detection, model validation, and data integration, is crucial for identifying meaningful metabolites and drawing accurate diagnostic conclusions. By offering researchers the tools and knowledge to navigate the complexities of volatolomics data analysis, this guide emphasizes the importance of understanding the strengths and limitations of each method. Such informed decision-making enhances the reliability of findings, ultimately advancing the field and improving the understanding of metabolic processes in health and disease.</p>","PeriodicalId":15306,"journal":{"name":"Journal of breath research","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of breath research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1088/1752-7163/ad9b46","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Volatolomics (or volatilomics), the study of volatile organic compounds, has emerged as a significant branch of metabolomics due to its potential for non-invasive diagnostics and disease monitoring. However, the analysis of high-resolution data from mass spectrometry and gas sensor array-based instruments remains challenging. The careful consideration of experimental design, data collection, and processing strategies is essential to enhance the quality of results obtained from subsequent analyses. This comprehensive guide provides an in-depth exploration of volatolomics data analysis, highlighting the essential steps, such as data cleaning, pretreatment, and the application of statistical and machine learning techniques, including dimensionality reduction, clustering, classification, and variable selection. The choice of these methodologies, along with data handling practices, such as missing data imputation, outlier detection, model validation, and data integration, is crucial for identifying meaningful metabolites and drawing accurate diagnostic conclusions. By offering researchers the tools and knowledge to navigate the complexities of volatolomics data analysis, this guide emphasizes the importance of understanding the strengths and limitations of each method. Such informed decision-making enhances the reliability of findings, ultimately advancing the field and improving the understanding of metabolic processes in health and disease.
期刊介绍:
Journal of Breath Research is dedicated to all aspects of scientific breath research. The traditional focus is on analysis of volatile compounds and aerosols in exhaled breath for the investigation of exogenous exposures, metabolism, toxicology, health status and the diagnosis of disease and breath odours. The journal also welcomes other breath-related topics.
Typical areas of interest include:
Big laboratory instrumentation: describing new state-of-the-art analytical instrumentation capable of performing high-resolution discovery and targeted breath research; exploiting complex technologies drawn from other areas of biochemistry and genetics for breath research.
Engineering solutions: developing new breath sampling technologies for condensate and aerosols, for chemical and optical sensors, for extraction and sample preparation methods, for automation and standardization, and for multiplex analyses to preserve the breath matrix and facilitating analytical throughput. Measure exhaled constituents (e.g. CO2, acetone, isoprene) as markers of human presence or mitigate such contaminants in enclosed environments.
Human and animal in vivo studies: decoding the ''breath exposome'', implementing exposure and intervention studies, performing cross-sectional and case-control research, assaying immune and inflammatory response, and testing mammalian host response to infections and exogenous exposures to develop information directly applicable to systems biology. Studying inhalation toxicology; inhaled breath as a source of internal dose; resultant blood, breath and urinary biomarkers linked to inhalation pathway.
Cellular and molecular level in vitro studies.
Clinical, pharmacological and forensic applications.
Mathematical, statistical and graphical data interpretation.