Sotiris Michaelides , Stefan Lenz , Thomas Vogt , Martin Henze
{"title":"Secure integration of 5G in industrial networks: State of the art, challenges and opportunities","authors":"Sotiris Michaelides , Stefan Lenz , Thomas Vogt , Martin Henze","doi":"10.1016/j.future.2024.107645","DOIUrl":null,"url":null,"abstract":"<div><div>The industrial landscape is undergoing a significant transformation, moving away from traditional wired fieldbus networks to cutting-edge 5G mobile networks. This transition, extending from local applications to company-wide use and spanning multiple factories, is driven by the promise of low-latency communication and seamless connectivity for various devices in industrial settings. However, besides these tremendous benefits, the integration of 5G as the communication infrastructure in industrial networks introduces a new set of risks and threats to the security of industrial systems. The inherent complexity of 5G systems poses unique challenges for ensuring a secure integration, surpassing those encountered with any technology previously utilized in industrial networks. Most importantly, the distinct characteristics of industrial networks, such as real-time operation, required safety guarantees, and high availability requirements, further complicate this task. As the industrial transition from wired to wireless networks is a relatively new concept, a lack of guidance and recommendations on securely integrating 5G renders many industrial systems vulnerable and exposed to threats associated with 5G. To address this situation, in this paper, we summarize the state-of-the-art and derive a set of recommendations for the secure integration of 5G into industrial networks based on a thorough analysis of the research landscape. Furthermore, we identify opportunities to utilize 5G to enhance security and indicate remaining challenges, identifying future academic directions.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"166 ","pages":"Article 107645"},"PeriodicalIF":6.2000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X24006095","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The industrial landscape is undergoing a significant transformation, moving away from traditional wired fieldbus networks to cutting-edge 5G mobile networks. This transition, extending from local applications to company-wide use and spanning multiple factories, is driven by the promise of low-latency communication and seamless connectivity for various devices in industrial settings. However, besides these tremendous benefits, the integration of 5G as the communication infrastructure in industrial networks introduces a new set of risks and threats to the security of industrial systems. The inherent complexity of 5G systems poses unique challenges for ensuring a secure integration, surpassing those encountered with any technology previously utilized in industrial networks. Most importantly, the distinct characteristics of industrial networks, such as real-time operation, required safety guarantees, and high availability requirements, further complicate this task. As the industrial transition from wired to wireless networks is a relatively new concept, a lack of guidance and recommendations on securely integrating 5G renders many industrial systems vulnerable and exposed to threats associated with 5G. To address this situation, in this paper, we summarize the state-of-the-art and derive a set of recommendations for the secure integration of 5G into industrial networks based on a thorough analysis of the research landscape. Furthermore, we identify opportunities to utilize 5G to enhance security and indicate remaining challenges, identifying future academic directions.
期刊介绍:
Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications.
Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration.
Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.