Modeling phosphorus dynamics in rice irrigation systems: Integrating O-Fe-P coupling and regional water cycling

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL Journal of Hydrology Pub Date : 2024-12-04 DOI:10.1016/j.jhydrol.2024.132405
Xuanye Liu, Minghong Chen, Yun Li, Lu Bai, Jiansong Guo
{"title":"Modeling phosphorus dynamics in rice irrigation systems: Integrating O-Fe-P coupling and regional water cycling","authors":"Xuanye Liu, Minghong Chen, Yun Li, Lu Bai, Jiansong Guo","doi":"10.1016/j.jhydrol.2024.132405","DOIUrl":null,"url":null,"abstract":"The simulation of phosphorus (P) transport processes in rice irrigation areas plays a crucial role in managing eutrophication issues in downstream water bodies within the context of water conservation. Rice cultivation typically occurs in flat plains, where the soil and water environment of paddy fields undergo significant changes during the growth phase, particularly under water conservation practices. This study constructed a distributed model for the microenvironmental stratification of P transformation and transport in paddy fields, which was coupled with a hydrodynamic water quality model for river networks in irrigation areas. The model incorporated several crucial hydrological and water quality processes specific to rice irrigation areas, including water management within paddy fields, diffusion and coupled transformation processes of oxygen-iron-phosphorus in paddy soils, water partitioning-catchment processes in river networks, purification of P in rivers or drainage ditches, and other pertinent physical and biochemical processes related to P transport in irrigation areas. Application of the model in the Heping Irrigation District demonstrated that the simulation of water and P transport processes across various scales well matched the measured data. Both experimental and simulated results indicated that P loads in drainage ditches and rivers were primarily influenced by P discharge from upstream paddy fields, with the model effectively capturing the impact of hydrological fluctuations in paddy fields on P transformation and transport. Thus, the model proves highly suitable for assessing P loads in irrigation districts under varying water management practices.","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"219 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2024.132405","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The simulation of phosphorus (P) transport processes in rice irrigation areas plays a crucial role in managing eutrophication issues in downstream water bodies within the context of water conservation. Rice cultivation typically occurs in flat plains, where the soil and water environment of paddy fields undergo significant changes during the growth phase, particularly under water conservation practices. This study constructed a distributed model for the microenvironmental stratification of P transformation and transport in paddy fields, which was coupled with a hydrodynamic water quality model for river networks in irrigation areas. The model incorporated several crucial hydrological and water quality processes specific to rice irrigation areas, including water management within paddy fields, diffusion and coupled transformation processes of oxygen-iron-phosphorus in paddy soils, water partitioning-catchment processes in river networks, purification of P in rivers or drainage ditches, and other pertinent physical and biochemical processes related to P transport in irrigation areas. Application of the model in the Heping Irrigation District demonstrated that the simulation of water and P transport processes across various scales well matched the measured data. Both experimental and simulated results indicated that P loads in drainage ditches and rivers were primarily influenced by P discharge from upstream paddy fields, with the model effectively capturing the impact of hydrological fluctuations in paddy fields on P transformation and transport. Thus, the model proves highly suitable for assessing P loads in irrigation districts under varying water management practices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水稻灌溉系统磷动态模拟:O-Fe-P耦合与区域水循环的整合
水稻灌区磷输运过程的模拟对控制下游水体富营养化具有重要意义。水稻种植通常发生在平坦平原,稻田的土壤和水环境在生长阶段发生重大变化,特别是在节水措施下。本研究建立了水田磷转化和运移的微环境分层分布模型,并与灌区水系水动力水质模型相结合。该模型结合了水稻灌区特有的几个关键水文和水质过程,包括水田内的水管理、水稻土壤中氧-铁-磷的扩散和耦合转化过程、河网中的分水-集水过程、河流或排水沟中磷的净化,以及与灌区磷运输相关的其他相关物理和生化过程。该模型在和平灌区的应用表明,不同尺度的水磷输运过程模拟与实测数据吻合较好。实验和模拟结果均表明,排水沟和河流的磷负荷主要受上游水田磷排放的影响,该模型有效地捕捉了水田水文波动对磷转化和运移的影响。因此,该模型非常适合于评估不同水管理措施下灌区的磷负荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
期刊最新文献
Evolution patterns, driving mechanisms, and ecological indicative effects of 730 lakes water color in the Yangtze River Basin (1984–2023) Hydrological connectivity and biogeochemical dynamics in the function and management of the lower Oder floodplain Urban real-time rainfall-runoff prediction using adaptive SSA-decomposition with dual attention Geochemical behavior of high-level radium contamination in representative coastal saltworks LSTM-FKAN coupled with feature extraction technique for Precipitation–Runoff modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1