Groundwater storage anomalies projection by optimized deep learning refines groundwater management in typical arid basins

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL Journal of Hydrology Pub Date : 2024-12-03 DOI:10.1016/j.jhydrol.2024.132452
Xiaoya Deng, Guangyan Wang, Feifei Han, Yanming Gong, Xingming Hao, Guangpeng Zhang, Pei Zhang, Qianjuan Shan
{"title":"Groundwater storage anomalies projection by optimized deep learning refines groundwater management in typical arid basins","authors":"Xiaoya Deng, Guangyan Wang, Feifei Han, Yanming Gong, Xingming Hao, Guangpeng Zhang, Pei Zhang, Qianjuan Shan","doi":"10.1016/j.jhydrol.2024.132452","DOIUrl":null,"url":null,"abstract":"The GRACE satellite provides tools for accurately characterizing the spatiotemporal variations of regional groundwater storage anomalies (GWSA) under the background of climate change and anthropogenic disturbances. However, its low spatial resolution restricts the refined management of groundwater. Multi-scale geographically weighted regression (MGWR) residuals are innovatively introduced for bias correction, which improves the GRACE-based GWSA downscaling accuracy (average R<ce:sup loc=\"post\">2</ce:sup> = 0.98). Further application of the K-means identifies four spatial distribution patterns of GWSA in the Tarim River mainstream (TRM), which showed a downward trend from 2003 to 2020. However, under effective groundwater management (such as ecological water transfer, ecological gate water diversion, etc.), the decline rate is gradually decreasing. Feature contribution analysis demonstrates that soil moisture storage (SMS), land surface temperature (LST), and normalized difference vegetation index (NDVI) are the primary driving factors of GWSA changes. Using the long short-term memory (LSTM) deep learning model optimized by multi-strategy gray wolf optimization algorithm (MSGWO), the GWSA of four spatial patterns is predicted under two shared socioeconomic pathways (SSPs, including SSP245 and SSP585). The model achieved a maximum R/NSE of 0.95/0.91 on the train dataset and 0.88/0.71 on the test dataset, outperforming similar models. The future groundwater reserves of TRM will show an improving trend, indicating that groundwater management has achieved significant benefits. Notably, high emissions without government intervention (SSP585) have exacerbated the risk of groundwater resource shortages, and refined groundwater management needs to be further strengthened in the future. Overall, the proposed GRACE-based GWSA downscaling framework and MSGWO-LSTM predictive model provide tools for the refined scientific management of groundwater in arid basins.","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"88 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2024.132452","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The GRACE satellite provides tools for accurately characterizing the spatiotemporal variations of regional groundwater storage anomalies (GWSA) under the background of climate change and anthropogenic disturbances. However, its low spatial resolution restricts the refined management of groundwater. Multi-scale geographically weighted regression (MGWR) residuals are innovatively introduced for bias correction, which improves the GRACE-based GWSA downscaling accuracy (average R2 = 0.98). Further application of the K-means identifies four spatial distribution patterns of GWSA in the Tarim River mainstream (TRM), which showed a downward trend from 2003 to 2020. However, under effective groundwater management (such as ecological water transfer, ecological gate water diversion, etc.), the decline rate is gradually decreasing. Feature contribution analysis demonstrates that soil moisture storage (SMS), land surface temperature (LST), and normalized difference vegetation index (NDVI) are the primary driving factors of GWSA changes. Using the long short-term memory (LSTM) deep learning model optimized by multi-strategy gray wolf optimization algorithm (MSGWO), the GWSA of four spatial patterns is predicted under two shared socioeconomic pathways (SSPs, including SSP245 and SSP585). The model achieved a maximum R/NSE of 0.95/0.91 on the train dataset and 0.88/0.71 on the test dataset, outperforming similar models. The future groundwater reserves of TRM will show an improving trend, indicating that groundwater management has achieved significant benefits. Notably, high emissions without government intervention (SSP585) have exacerbated the risk of groundwater resource shortages, and refined groundwater management needs to be further strengthened in the future. Overall, the proposed GRACE-based GWSA downscaling framework and MSGWO-LSTM predictive model provide tools for the refined scientific management of groundwater in arid basins.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
期刊最新文献
Corrigendum to “Climate change reshapes bioclimatic environments in China’s dry–wet transition zones” [J. Hydrol. 634 (2024) 131122] Dependence of riverine total phosphorus retention and fluxes on hydrology and river size at river network scale Investigating the effects of spatial heterogeneity of multi-source profile soil moisture on spatial–temporal processes of high-resolution floods Estimating family of soil–water characteristic curves for sandy soils from unimodal grain size distribution and void ratio A novel implementation of pre-processing approaches and hybrid kernel-based model for short- and long-term groundwater drought forecasting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1