A simplified method for estimating the alpha coefficient in surface velocity based river discharge measurements

IF 5.9 1区 地球科学 Q1 ENGINEERING, CIVIL Journal of Hydrology Pub Date : 2024-12-01 DOI:10.1016/j.jhydrol.2024.132468
Dario Pumo, Francesco Alongi, Carmelo Nasello, Leonardo V. Noto
{"title":"A simplified method for estimating the alpha coefficient in surface velocity based river discharge measurements","authors":"Dario Pumo, Francesco Alongi, Carmelo Nasello, Leonardo V. Noto","doi":"10.1016/j.jhydrol.2024.132468","DOIUrl":null,"url":null,"abstract":"Remote sensing techniques for river monitoring facilitate faster measurement campaigns compared to traditional methods, reduce risks to personnel and instruments, and allow measurements under critical flow conditions. An alpha coefficient (α) is commonly employed to convert surface velocities, obtained by contactless techniques, into depth-averaged velocities, which are used for the application of the velocity-area method for assessing discharge. Some optical-based software programs use a constant α value, based on a theoretical “standard”. However, analyses of empirical vertical velocity profiles in real cases reveal that α can significantly deviate from this standard due to various factors (roughness, turbulence, etc.).","PeriodicalId":362,"journal":{"name":"Journal of Hydrology","volume":"219 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.jhydrol.2024.132468","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Remote sensing techniques for river monitoring facilitate faster measurement campaigns compared to traditional methods, reduce risks to personnel and instruments, and allow measurements under critical flow conditions. An alpha coefficient (α) is commonly employed to convert surface velocities, obtained by contactless techniques, into depth-averaged velocities, which are used for the application of the velocity-area method for assessing discharge. Some optical-based software programs use a constant α value, based on a theoretical “standard”. However, analyses of empirical vertical velocity profiles in real cases reveal that α can significantly deviate from this standard due to various factors (roughness, turbulence, etc.).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于河流流量测量估算地表流速α系数的简化方法
与传统方法相比,河流监测的遥感技术有助于更快的测量活动,降低人员和仪器的风险,并允许在临界流量条件下进行测量。alpha系数(α)通常用于将非接触式技术获得的表面速度转换为深度平均速度,用于速度-面积法评估放电。一些基于光学的软件程序使用基于理论“标准”的恒定α值。然而,在实际情况下对经验垂直速度剖面的分析表明,由于各种因素(粗糙度,湍流等),α可能显著偏离该标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hydrology
Journal of Hydrology 地学-地球科学综合
CiteScore
11.00
自引率
12.50%
发文量
1309
审稿时长
7.5 months
期刊介绍: The Journal of Hydrology publishes original research papers and comprehensive reviews in all the subfields of the hydrological sciences including water based management and policy issues that impact on economics and society. These comprise, but are not limited to the physical, chemical, biogeochemical, stochastic and systems aspects of surface and groundwater hydrology, hydrometeorology and hydrogeology. Relevant topics incorporating the insights and methodologies of disciplines such as climatology, water resource systems, hydraulics, agrohydrology, geomorphology, soil science, instrumentation and remote sensing, civil and environmental engineering are included. Social science perspectives on hydrological problems such as resource and ecological economics, environmental sociology, psychology and behavioural science, management and policy analysis are also invited. Multi-and interdisciplinary analyses of hydrological problems are within scope. The science published in the Journal of Hydrology is relevant to catchment scales rather than exclusively to a local scale or site.
期刊最新文献
Evolution patterns, driving mechanisms, and ecological indicative effects of 730 lakes water color in the Yangtze River Basin (1984–2023) Hydrological connectivity and biogeochemical dynamics in the function and management of the lower Oder floodplain Urban real-time rainfall-runoff prediction using adaptive SSA-decomposition with dual attention Geochemical behavior of high-level radium contamination in representative coastal saltworks LSTM-FKAN coupled with feature extraction technique for Precipitation–Runoff modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1