{"title":"Alternating current curing of conductive fly ash-slag geopolymer mortars: performance, characterization and optimization","authors":"Beyza Fahriye Aygun, Mucteba Uysal, Turhan Bilir, Turgay Çoşgun, Hasan Dilbas","doi":"10.1007/s43452-024-01103-4","DOIUrl":null,"url":null,"abstract":"<div><p>This research seeks to pinpoint the most robust series by subjecting geopolymer mortars (GMs) to electrical curing (AC) at 20 V based on different NaOH concentrations and GBFS/FA ratios. To enhance the electrical conductivity of GMs displaying optimal mechanical properties, carbon fiber (CF), steel fiber (SF), waste wire erosion (WWE) (0.25%, 0.50%, and 0.75%), and carbon black (CB) (1%, 2%, and 3%) were introduced into the chosen series. A comprehensive assessment encompassing compressive strength, flexural strength, ultrasonic pulse velocities, direct tensile strength and splitting tensile strengths were conducted on mixtures undergoing 24 h of AC. The study's findings indicated a substantial improvement in mechanical properties through electrical curing compared to ambient curing conditions. Notably, a correlation of up to 99% was established between direct and splitting tensile properties. The investigation revealed that the highest compressive strength, reaching 72.41 MPa at 1 day strength, was achieved through the thermal curing method with electric curing, particularly in the 100GBFS series. On the other hand, the optimum bending strength, approximately 19 MPa, was observed in the SFA075WWE series. These results highlight the efficacy of the thermal curing method with electric curing in enhancing the compressive strength of the 100GBFS series and the flexural strength of the SFA075WWE series, underscoring the potential benefits of specific curing methods for different series within the study.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-024-01103-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This research seeks to pinpoint the most robust series by subjecting geopolymer mortars (GMs) to electrical curing (AC) at 20 V based on different NaOH concentrations and GBFS/FA ratios. To enhance the electrical conductivity of GMs displaying optimal mechanical properties, carbon fiber (CF), steel fiber (SF), waste wire erosion (WWE) (0.25%, 0.50%, and 0.75%), and carbon black (CB) (1%, 2%, and 3%) were introduced into the chosen series. A comprehensive assessment encompassing compressive strength, flexural strength, ultrasonic pulse velocities, direct tensile strength and splitting tensile strengths were conducted on mixtures undergoing 24 h of AC. The study's findings indicated a substantial improvement in mechanical properties through electrical curing compared to ambient curing conditions. Notably, a correlation of up to 99% was established between direct and splitting tensile properties. The investigation revealed that the highest compressive strength, reaching 72.41 MPa at 1 day strength, was achieved through the thermal curing method with electric curing, particularly in the 100GBFS series. On the other hand, the optimum bending strength, approximately 19 MPa, was observed in the SFA075WWE series. These results highlight the efficacy of the thermal curing method with electric curing in enhancing the compressive strength of the 100GBFS series and the flexural strength of the SFA075WWE series, underscoring the potential benefits of specific curing methods for different series within the study.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.