Development of essential oils inclusion complexes: a nanotechnology approach with enhanced thermal and light stability

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanoscale Research Letters Pub Date : 2024-12-08 DOI:10.1186/s11671-024-04158-7
Fernanda Ramalho Procopio, Ramon Peres Brexó, Luis Eduardo Sousa Vitolano, Maria Eduarda da Mata Martins, Maria Eduarda de Almeida Astolfo, Stanislau Bogusz Junior, Marcos David Ferreira
{"title":"Development of essential oils inclusion complexes: a nanotechnology approach with enhanced thermal and light stability","authors":"Fernanda Ramalho Procopio,&nbsp;Ramon Peres Brexó,&nbsp;Luis Eduardo Sousa Vitolano,&nbsp;Maria Eduarda da Mata Martins,&nbsp;Maria Eduarda de Almeida Astolfo,&nbsp;Stanislau Bogusz Junior,&nbsp;Marcos David Ferreira","doi":"10.1186/s11671-024-04158-7","DOIUrl":null,"url":null,"abstract":"<div><p>Essential oils (EOs) are volatile compounds that may have antimicrobial and antioxidant properties. Despite their potential application, low water solubility and chemical instability are limiting factors. Nanoencapsulation processes can overcome this problem, protecting against external factors and promoting a moderate release. Therefore, the objective of the present study was to encapsulate <i>Cymbopogon citratus</i> (CC) and <i>Origanum vulgare</i> (OV) essential oils in β-cyclodextrin (βCD) complexes. Different ratios (w/w) between βCD and EOs (96:4, 92:8, 90:10, 88:12) were tested, seeking greater entrapment efficiency. The particles were characterized by yield, entrapment efficiency, size distribution, morphology, crystallinity, infrared spectroscopy, and thermal behavior. Furthermore, the thermal (70 °C) and photochemical (UV) stability of the free and encapsulated EO was evaluated for 48 h. The results showed that the βCD-CC 90:10 and βCD-OV 90:10 formulations presented greater entrapment efficiency. Crystalline structures of varying sizes (200 to 800 nm), trapezoidal shape, and tendency to aggregation were obtained. Changes in the βCD crystalline organization and the suppression of characteristic free oil absorption bands suggest the EO entrapment. Regarding stability results, βCD-CC remained constant when CC showed losses of 20% (photodegradation) and 60% (thermal degradation) after 48 h of stress exposure. Free OV showed slight variations in absorbance over time, while βCD-OV remained constant over 24 h (thermal degradation) and maintained 60% of oil over 48 h of photo exposure. Furthermore, OV and CC demonstrate color change over time, while βCD-OV and βCD-CC remained constant. The results demonstrate that nanoencapsulation can be an interesting tool for protecting EOs.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-024-04158-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04158-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Essential oils (EOs) are volatile compounds that may have antimicrobial and antioxidant properties. Despite their potential application, low water solubility and chemical instability are limiting factors. Nanoencapsulation processes can overcome this problem, protecting against external factors and promoting a moderate release. Therefore, the objective of the present study was to encapsulate Cymbopogon citratus (CC) and Origanum vulgare (OV) essential oils in β-cyclodextrin (βCD) complexes. Different ratios (w/w) between βCD and EOs (96:4, 92:8, 90:10, 88:12) were tested, seeking greater entrapment efficiency. The particles were characterized by yield, entrapment efficiency, size distribution, morphology, crystallinity, infrared spectroscopy, and thermal behavior. Furthermore, the thermal (70 °C) and photochemical (UV) stability of the free and encapsulated EO was evaluated for 48 h. The results showed that the βCD-CC 90:10 and βCD-OV 90:10 formulations presented greater entrapment efficiency. Crystalline structures of varying sizes (200 to 800 nm), trapezoidal shape, and tendency to aggregation were obtained. Changes in the βCD crystalline organization and the suppression of characteristic free oil absorption bands suggest the EO entrapment. Regarding stability results, βCD-CC remained constant when CC showed losses of 20% (photodegradation) and 60% (thermal degradation) after 48 h of stress exposure. Free OV showed slight variations in absorbance over time, while βCD-OV remained constant over 24 h (thermal degradation) and maintained 60% of oil over 48 h of photo exposure. Furthermore, OV and CC demonstrate color change over time, while βCD-OV and βCD-CC remained constant. The results demonstrate that nanoencapsulation can be an interesting tool for protecting EOs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
精油包合物的开发:具有增强热稳定性和光稳定性的纳米技术方法
精油(EOs)是挥发性化合物,可能具有抗菌和抗氧化特性。尽管它们具有潜在的应用前景,但低水溶性和化学不稳定性是限制因素。纳米包封工艺可以克服这个问题,防止外部因素的影响,并促进适度的释放。因此,本研究的目的是在β-环糊精(βCD)配合物中包封香茅(CC)和牛头草(OV)精油。为了获得更高的捕集效率,我们测试了βCD和EOs的不同比值(w/w)(96:4, 92:8, 90:10, 88:12)。通过产率、包封效率、粒径分布、形貌、结晶度、红外光谱和热行为等指标对颗粒进行了表征。并对包封后的游离EO进行了48 h的热稳定性(70℃)和光化学稳定性(UV)评价。结果表明,βCD-CC 90:10和βCD-OV 90:10的包封效率较高。获得了不同尺寸(200 ~ 800 nm)的晶体结构、梯形结构和聚集倾向。β - cd晶体组织的变化和特征自由吸油带的抑制表明EO包裹。在稳定性结果方面,当CC暴露48 h后损失20%(光降解)和60%(热降解)时,βCD-CC保持不变。随着时间的推移,游离OV的吸光度略有变化,而βCD-OV在24小时内保持不变(热降解),并在48小时的曝光中保持60%的油。此外,OV和CC随时间变化,而βCD-OV和βCD-CC保持不变。结果表明,纳米封装可以成为一种有趣的保护EOs的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
期刊最新文献
Correlation of precisely fabricated geometric characteristics of DNA-origami nanostructures with their cellular entry in human lens epithelial cells Synergistic activity of Pitstop-2 and 1,6-hexanediol in aggressive human lung cancer cells Phytonanoparticles as novel drug carriers for enhanced osteogenesis and osseointegration Investigation of chitin grafting: thermal, antioxidant and antitumor properties Revolutionizing radiotherapy: gold nanoparticles with polyphenol coating as novel enhancers in breast cancer cells—an in vitro study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1