I. Brevik, Maxim Khlopov, S. D. Odintsov, Alexander V. Timoshkin, Oem Trivedi
{"title":"Rips and regular future scenario with holographic dark energy: a comprehensive look","authors":"I. Brevik, Maxim Khlopov, S. D. Odintsov, Alexander V. Timoshkin, Oem Trivedi","doi":"10.1140/epjc/s10052-024-13601-z","DOIUrl":null,"url":null,"abstract":"<div><p>Interest on the possible future scenarios the universe could have has grew substantially with breakthroughs on late-time acceleration. Holographic dark energy (HDE) presents a very interesting approach towards addressing late-time acceleration, presenting an intriguing interface of ideas from quantum gravity and cosmology. In this work we present an extensive discussion of possible late-time scenarios, focusing on rips and similar events, in a universe with holographic dark energy. We discuss these events in the realm of the generalized Nojiri–Odintsov cutoff and also for the more primitive holographic cutoffs like Hubble, particle and event horizon cutoffs. We also discuss the validity of the generalized second law of thermodynamics and various energy conditions in these regimes. Our work points towards the idea that it is not possible to have alternatives of the big rip consistently in the simpler HDE cutoffs, and shows the flexibility of the generalized HDE cutoff as well.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 12","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13601-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13601-z","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
Interest on the possible future scenarios the universe could have has grew substantially with breakthroughs on late-time acceleration. Holographic dark energy (HDE) presents a very interesting approach towards addressing late-time acceleration, presenting an intriguing interface of ideas from quantum gravity and cosmology. In this work we present an extensive discussion of possible late-time scenarios, focusing on rips and similar events, in a universe with holographic dark energy. We discuss these events in the realm of the generalized Nojiri–Odintsov cutoff and also for the more primitive holographic cutoffs like Hubble, particle and event horizon cutoffs. We also discuss the validity of the generalized second law of thermodynamics and various energy conditions in these regimes. Our work points towards the idea that it is not possible to have alternatives of the big rip consistently in the simpler HDE cutoffs, and shows the flexibility of the generalized HDE cutoff as well.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.